

Question Answering

Query = Natural Language Question

Result = Exact Answer or Short Passage

Q: Who's the adoptive son of Julius Cesar?

A: Here we see Brutus, the adoptive son of Julius Cesar, hitting him with a dagger

Non-factoid QA

Factoid

Who, Where, When

Answers are Named Entities, dates or numbers

Needs **structured data** or **extraction** from unstructured data

Non-factoid

Causation, manner, reason

Answers are **sentences** or **paragraphs**

Needs **NLP** for questionanswer **similarity**

Introduction and Motivation

Distributional Semantics

Yahoo! Answers Experiment

"Who Wants to Be Millionaire?" Experiment

General Architecture

Indexing

General Architecture

Retrieval

Learning to Rank

Learn the Ranking Function from Question-Answer

Represent Question-Answer pair as a datapoint with

Question specific and Answer specific features (length, category, type of origin document, ...)

Question-Answer features (different similarity measures, TFIDF, BM25, N-gram overlap, Machine Translation, syntactic similarity, ...)

Some questions do not share even a **single word** with the answer

Q: Which beverages contain alcohol?

A: Wine makes you drunk

Ranking answers according to their **semantic similarity** with the question can overcome the problem

Distributional Semantic Models

Exploit latent or explicit concepts rather than words

Tasks:

semantic text similarity

synonyms detection

query expansion

topic identification

- - -

Models:

Latent Semantic Analysis

Random Indexing

Continuous Skip-gram Model

Non-negative Matrix

Factorization

Latent Dirichlet Allocation

Explicit Semantic Analysis

RQ1 Are the distributional semantic representations good representations for the meaning of questions and answers?

RQ2 Can distributional semantic representations be combined with other criteria in order to obtain a better ranking of the answers?

Distributional Semantic Models

Represent words as points in a geometric space

Do not require specific text operations (corpus / language independent)

Widely used in IR and Computational Linguistic

Never been used for answer re-ranking

Distributional Semantic Models

```
memory
             floppy_disk
   ram
         chip
                               hard_disk
                      disk
                               printer
software
                  computer
              workstation
    OS
                рс
                               device
operating_system
         linux
                                   mouse
                                            mice
             tux
                                                 rat
                                    rabbit
                      penguin
                                            animal
                                 dog
                                                       insect
                               cat
                                      monkey
```


Semantic similarity between Question and Answer

Computed with Distributional Semantic Models

Used as re-rank feature

Co-occurrence Matrix

Term-term co-occurrence matrix: contains the co-occurrences between terms within a prefixed distance

	dog	cat	computer	animal	mouse
dog	0	4	0	2	1
cat	4	0	0	3	5
computer	0	0	0	0	3
animal	2	3	0	0	2
mouse	1	5	3	2	0

Approximations

TTM: Term-Term co-occurrence Matrix

Latent Semantic Analysis (LSA): TSVD of the cooccurrence matrix

Random Indexing (RI): based on the Random Projection

Latent Semantic Analysis over Random Indexing (LSARI)

Continuous Skip-gram Model (CSGM): based on neural networks

Latent Semantic Analysis

Random Indexing

Locality-sensitive hashing method which approximate the distance between points

$$B^{n,k} \approx A^{n,m} R^{m,k} \quad k \ll m$$

B preserves the euclidean distance between points in **A** (Johnson-Lindenstrauss lemma)

$$(1 - \epsilon)d_r(v, u) \le d(v, u) \le (1 + \epsilon)d_r(v, u)$$

Generate and **assign** a Context Vector to each context element (e.g. document, passage, term, ...) with K random values in {-1, 0, +1} with **enforced sparsity**

Term Vector is the **sum** of the Context Vectors of all contexts in which the term **occurs**

Random Indexing

Example

Dataset: I drink wine

You drink wine and beer

Context Vectors

i	1	0	0	0	0	-1	0
drink	0	0	1	0	0	0	0
wine	0	1	0	0	0	0	0
you	0	-1	0	0	0	0	1
and	0	0	0	1	0	0	0
beer	-1	0	0	0	1	0	0

Term Vector for wine

$$1 \cdot cv_i + 2 \cdot cv_{drink} + 1 \cdot cv_{you} + 1 \cdot cv_{and} + 1 \cdot cv_{beer}$$

Continuous Skip-gram

Feedforward Neural Network <u>without</u> hidden layer

Iterates over the words in the dataset, each word w(t) is an input to a log-linear classifier with a continuous projection layer

INPUT PROJECTION OUTPUT

Continuous Skip-gram

The output is a prediction of the words within a certain range before and after the input word

c is the fixed range before and after a word, a value r is obtained picking randomly a value between [1,c]

INPUT PROJECTION OUTPUT

Compositionality

We need a method to represent question and answers, as they are **composed** by more than one term

Addition (+): sum of all the vectors of the terms in the question or answer

Compute the **cosine similarity** between the summed vectors

Other operators can be used (product, max, min, convolution, ...) with no clear advantage

Compositionality

Yahoo! Answers Experiment

Best answer prediction on Yahoo! Answers data

2 Datasets

~220 features from different families:

textual / content based

user based

network based

Lexicalizations

Different **lexicalization chains** (term, stem, lemma, lemma+pos, named entity, dependency, semantic role, supersense)

E.g. John plays piano

term, length 2: john-plays, plays-piano

lemma, length 1: john, play, piano

dependency (lemma), length 2: john-(subj)->play, piano-(dobj)-> play

semantic role (supersense), length 2: noun.person-A0->verb.perform, noun.artifact-A1->verb.perform

Textual features

Linguistic similarity (Overlap, Frequency, Density, Machine Translation, Length and Exact Sequence for all lexicalizations)

Text quality features (Visual Properties, Readability, Informativeness)

Distributional Semantics (LSA, RI, RILSA, CSGM on Wikipedia and answer corpus)

User profile

Question and answers counts and ratios

Question and answers counts and ratios per category

Behavior (engagement)

In-degree, Hits authority and PageRank

on 3 different networks:

Asker-Replier

Asker-Best-Answer

Competition-Based-Expertise

Network Features

Question Answering Network

Asker-Replier Network

Asker Best Answer Network

Competition-Based Expertise Network

- X User
- Q_X Question
- ···► Asks question
- Answers to question
- → Best Answer
- → Expertise netwrk link

Experimental Setting

Learning to Rank algorithm: Random Forests

Measures: P@1, MRR, NDCG

$$P@1 = rel_1$$

$$RR = \frac{1}{rank(BA)}$$

$$DCG_{k} = \sum_{i=1}^{k} \frac{2^{rel_{i}} - 1}{\log_{2}(i+1)}$$

 rel_1 is an indicator function returns l if the answer in the i^{th} position is the best answer

Yahoo! Answers 2011 English questions

>7M questions >39M answers >6M users

Questions are clustered with k-means in **4 clusters** factual-information seeking (31%) subjective-information seeking (32%) social discussion (10%) poll-survey (27%)

70-10-20 split based on timestamp

Results

Features	P@1	\mathbf{MRR}	DCG				
BM25	0.4143	0.5532	0.6567	tq+u+n	0.6416	0.7742	0.8370
Agichtein et al. [2008]	0.5243	0.6375	0.6962	tq+u+ds	0.6210	0.7606	0.8266
$\overline{\mathbf{tq}}$	0.5305	0.7016	0.7655	tq+u+ls	0.6199	0.7597	0.8260
ls	0.5143	0.6921	0.7613	tq+lo+ds	0.5519	0.7143	0.7901
ds	0.4782	0.6760	0.7564	tq+u+n+ds	0.6450	0.7752	0.8379
\mathbf{u}	0.5218	0.7009	0.7757	tq+u+n+ls	0.6414	0.7739	0.8368
n	0.4527	0.6645	0.7484	all	0.6471	0.7798	0.8389
tq+u	0.6201	0.7597	0.8260				
tq+n	0.5862	0.7366	0.8080				
tq+ds	0.5536	0.7144	0.7910				
ta+ls	0.5515	0.7129	0.7897				

tq text quality Is linguistic similarity ds distributional semantics u user n network

MRR trends

NDCG trends

Feature Ablation

Feature	$-\Delta$		
tq: Preposition Count	0.049	tq: Conjunctions Count	0.035
tq: Verbs not in Question	0.045	tq: Capitalized Words Count	0.035
tq: Nouns not in Question	0.045	tq: "To be" Count	0.035
tq: Unique Words in Answer	0.043	ls: Lemma Overlap	0.034
tq: Pronouns Count	0.042	ls: Stem Overlap	0.034
tq: Punctuation Count	0.039	ls: Term Overlap	0.032
tq: Average Words per Sentence	0.039	tq: Auxiliary Verbs Count	0.034
ds: Random Indexing on Yahoo! Answers	0.039	ls: Super-senses BM25	0.031
ls: Super-senses Overlap	0.038	n: Indegree on CBEN	0.030
tq: Adjectives not in Question	0.036	u: Answerer's Best Answer Ratio	0.030

Distributional Features

Feature	Rank
ds: Random Indexing on Yahoo! Answers	8
ds: Continuous Skip-gram Model on Yahoo! Answers	30
ds: LSA on Wikipedia	37
ds: LSA after Random Indexing on Wikipedia	38
ds: Continuous Skip-gram Model on Wikipedia	39
ds: Random Indexing on Wikipedia	40
ds: LSA after Random Indexing on Yahoo! Answers	89
ds: LSA on Yahoo! Answers	90

Network Features

Feature	Rank
n: Indegree on CBEN	19
n: Hits on CBEN	32
n: Indegree on ABAN	101
n: Hits on ABAN	108
n: Indegree on ARN	161
n: Hits on ARN	164
n: PageRank on ARN	170
n: PageRank on CBEN	183
n: PageRank on ABAN	184

	Factual	Subjective	Discussion	Poll
tq	0.7329	0.7242	0.6676	0.6762
ls	0.7243	0.7117	0.6482	0.6350
ds	0.6873	0.6732	0.6371	0.6492
u	0.7221	0.7118	0.6724	0.6878
n	0.7003	0.6953	0.6132	0.6214
all	0.8053	0.7892	0.7502	0.7638

Dataset 2

Yahoo! Answers Manner questions

142K questions and 771K answers

Match the regular expression how (to | do | did | does | can | would | could | should), and have at least four words

No information about the users

Results

Features	P@1	MRR	DCG
m BM25	0.4112	0.5606	0.6121
Surdeanu et al. [2011]	0.5091	0.6465	-
Hieber and Riezler [2011]	0.4844	0.6676	-
ds	0.6118	0.7689	0.8198
ls	0.618	0.7717	0.8236
\mathbf{tq}	0.6245	0.7857	0.8352
ds+ls	0.618	0.7721	0.8236
ds+tq	0.6532	0.7920	0.8421
ls+tq	0.6401	0.7855	0.8352
ds+ls+tq	0.6532	0.7922	0.8425

tq text quality Is linguistic similarity ds distributional semantics

Different Ranking Algorithms

	$\mathbf{L}\mathbf{R}$	RankSVM	ListNet	\mathbf{RF}
Manner	0.6952	0.7683	0.7520	0.7922
Factual	0.7407	0.7774	0.7626	0.8059
Subjective	0.7183	0.7640	0.7411	0.7898
Discussion	0.6881	0.7256	0.7059	0.7508
Poll	0.7027	0.7286	0.7312	0.7644
All	0.7165	0.7491	0.7466	0.7798

Research Questions

RQ3 To what extent can a QA system be designed in a language-independent way, by preserving its effectiveness?

RQ4. Is it possible to develop an artificial player for the "Who Wants to Be a Millionaire?" game able to outperform human players?

Who Wants to Be Millionaire?

Who Wants to Be Millionaire?

4 possible answers to each question

Choose a possible answer according to the results of a QA system

Answers are paragraphs obtained from Wikipedia or triples from DBpedia

Answers example

Article Title	Passage Text	Score
Ridley Scott	Sir Ridley Scott (born 30 November 1937) is an English film director and producer. Following his commercial breakthrough with Alien (1979), his best-known works are the sci-fi classic Blade Runner (1982) and the best picture Oscar-winner Gladiator (2000).	0.532
Blade Runner	Blade Runner is a 1982 American dystopian science fiction action film directed by Ridley Scott and starring Harrison Ford, Rutger Hauer, and Sean Young. The screenplay, written by Hampton Fancher and David Peoples, is loosely based on the novel Do Androids Dream of Electric Sheep? by Philip K. Dick.	0.510
Blade Runner	Director Ridley Scott and the film's producers "spent months" meeting and discussing the role with Dustin Hoffman, who eventually departed over differences in vision. Harrison Ford was ultimately chosen for several reasons.	0.500
Blade Runner	The screenplay by Hampton Fancher was optioned in 1977. Producer Michael Deeley became interested in Fancher's draft and convinced director Ridley Scott to film it.	0.490
Blade Runner	Interest in adapting Philip K. Dick's novel Do Androids Dream of Electric Sheep? developed shortly after its 1968 publication. Director Martin Scorsese was interested in filming the novel, but never optioned it.	0.120

Artificial Player Architecture

Decision Making

Conservative **heuristic rules** to manage the situations where:

the maximum confidence for the four answers is low

there is **no confidence** at all in the answers (when the passages are not helpful)

the difference between the maximum confidence and the second best confidence is not large enough

Decide if to <u>use a "lifeline"</u>, to <u>answer directly</u> or to <u>retire</u>

Answer selection

Criteria

Levenshtein

Longest Common Subsequence

Term Overlap

Exact Substring

Density

Distributional similarity

Parameters

number of passages

level of lexicalization

stopword removal

score of the passages

question expansion

Example feature: TermOverlap (2, Lemma, Yes, Yes, Yes)

Combination of 1200 features with Random Forests

Experimental Setting

1960 Italian and 1960 English questions from the official WWBM board games, 5-fold cross validation

98 humans 20 questions each (only Italian)

Test the accuracy of the Answer Scoring

- 1. Query Google and take top 30 snippets
- Multiply the number of times the answer occurred in each snippet with the inverse of the rank of the snippet

Google Wikipedia Baseline: limit the results to Wikipedia articles for <u>fair comparison</u>

Best Single Criteria Italian

Rank	Criterion	\mathbf{P}	\mathbf{Lex}	\mathbf{S}	SW	$\mathbf{Q}\mathbf{E}$	Accuracy
1	Overlap	25	ST	Y	Y	N	64.29%
2	Overlap	25	LEM	Y	Y	N	64.29%
3	Density	3	KWD	Y	N	Y	64.03%
4	Density	30	ST	Y	Y	N	64.03%
5	Density	30	LEM	Y	Y	N	64.03%
6	Overlap	20	ST	Y	Y	N	63.78%
7	Overlap	20	$_{ m LEM}$	Y	Y	N	63.78%
8	Overlap	30	ST	Y	Y	N	63.78%
9	Overlap	30	$_{ m LEM}$	Y	Y	N	63.78%
10	Density	20	ST	Y	Y	N	63.27%
11	Density	20	$_{ m LEM}$	Y	Y	N	63.27%
12	Density	25	KWD	Y	Y	N	63.01%
13	Overlap	15	ST	Y	Y	N	62.76%
14	Overlap	15	$_{ m LEM}$	Y	Y	N	62.76%
15	Overlap	20	ST	N	Y	N	62.76%

ST stem LEM lemma KWD keyword S score SW stopword QE question expansion

Best Single Criteria English

Rank	Criterion	P	\mathbf{Lex}	\mathbf{S}	SW	$\mathbf{Q}\mathbf{E}$	Accuracy
1	Overlap	25	LEM	Y	Y	N	59.47%
2	Overlap	25	ST	Y	Y	N	59.38%
3	Density	3	KWD	Y	N	Y	59.26%
4	Overlap	20	ST	Y	Y	N	59.22%
5	Density	30	ST	Y	Y	N	59.08%
6	Density	30	$_{ m LEM}$	Y	Y	N	59.08%
7	Overlap	30	ST	Y	Y	N	58.99%
8	Density	20	ST	Y	Y	N	58.84%
9	Overlap	15	$_{ m LEM}$	Y	Y	N	58.72%
10	Density	25	KWD	Y	Y	N	58.37%
11	Overlap	30	LEM	Y	Y	N	58.35%
12	Density	20	LEM	Y	Y	N	58.21%
13	Overlap	20	LEM	Y	Y	N	58.14%
14	Overlap	20	ST	N	Y	N	57.99%
15	Overlap	15	ST	Y	Y	N	57.97%

ST stem LEM lemma KWD keyword S score SW stopword QE question expansion

Feature Groups Ablation

Decrease of accuracy

■ Italian dataset ■ English dataset

Accuracy Italian

Accuracy English

System performance for English

Gameplay Experiment

35 human players, 325 matches without overlapping questions for the same player

Test the ability of the **Artificial Player** (including **Decision Making**) in playing the game following its rules

Evaluated in terms of money earned and reached level

Reached level

Level reached

The **Artificial Player wins** the game **17 times** for Italian and **12 times** for English, while **human players never win**

Earned Money

Earned money

The Artificial
Player earns on
average €114,531
for Italian and
€88,878 for
English, while
human players
earn €5,926

RQ1 The new distributional semantics based features proposed achieve **surprisingly good results** considering their small number

RQ2 Distributional semantics based features **help achieving better ranking**. They are to be <u>preferred</u> to <u>linguistic similarity</u> ones as their contribution **overlaps** and they are **less computationally expensive**

RQ3 Definition of an **effective language-independent framework** for **QA** and **answer validation** leveraging open knowledge sources

RQ4 Built an **Artificial Player** which **outperforms human players** in terms of **average accuracy** and **money earned** playing <u>WWBM</u>

THE BEST THESIS DEFENSE IS A GOOD THESIS OFFENSE.

Published papers

Piero Molino, Pasquale Lops, Giovanni Semeraro, Marco de Gemmis, Pierpaolo Basile. Playing with knowledge: A virtual player for "Who Wants to Be a Millionaire?" that leverages question answering techniques. Artificial Intelligence 222: 157-181 (2015)

Piero Molino, Luca Maria Aiello. Distributed Representations for Semantic Matching in non-factoid Question Answering. SMIR@SIGIR 2014: 38-45

Piero Molino, Gianvito Pio, Corrado Mencar. Fast Fuzzy Inference in Octave. Int. J. Computational Intelligence Systems 6(2): 307-317 (2013)

Piero Molino, Pierpaolo Basile, Ciro Santoro, Pasquale Lops, Marco de Gemmis, Giovanni Semeraro. A Virtual Player for "Who Wants to Be a Millionaire?" based on Question Answering. Al*IA 2013: 205-216

Piero Molino, Pierpaolo Basile, Annalina Caputo, Pasquale Lops, Giovanni Semeraro. Distributional Semantics for Answer Re-ranking in Question Answering. IIR 2013: 100-103

Piero Molino. Semantic models for answer re-ranking in question answering. SIGIR 2013: 1146-1147

Piero Molino, Pierpaolo Basile. QuestionCube: a Framework for Question Answering. IIR 2012: 167-178

Piero Molino, Pierpaolo Basile, Annalina Caputo, Pasquale Lops, Giovanni Semeraro. Exploiting Distributional Semantic Models in Question Answering. ICSC 2012: 146-153

50:50

Remove 2 wrong answers randomly

Poll the Audience

[50%,80%] correct 1st level [20%,35%] correct 15th level

Phone a Friend

[1, 5] always correct

[6, 10] randomly correct or no answer

[11, 15] randomly correct, no answer or wrong answer

35: end procedure

Decision Making Algorithm

Algorithm 2 Decision making algorithm

```
1: procedure Decision Making(\langle q, (c_A, c_B, c_C, c_D) \rangle, lifelines)
    Decision strategy based on the scores of the four candidate answers for question q, and
    the available lifelines
       BestAnswer \leftarrow Best(\langle q, (c_A, c_B, c_C, c_D) \rangle)
       SecondBestAnswer \leftarrow SecondBest(< q, (c_A, c_B, c_C, c_D) >)
       if BestAnswer.score < threshold_1
   or (BestAnswer.score - SecondBestAnswer.score)
   <(BestAnswer.score*threshold_2) then
         if CanUse(Poll the Audience) then
 5:
              audienceAnswers \leftarrow Use(Poll\ the\ Audience)
 6:
 7:
              lifelines \leftarrow lifelines - \{Poll\ the\ Audience\}
 8:
              if audience Answers.score > threshold_1 then
9:
                  RETURN BEST(audienceAnswers)
10:
              end if
           end if
11:
          if CanUse(Phone a Friend) then
12:
13:
              friendAnswer \leftarrow Use(Phone \ a \ Friend)
14:
              lifelines \leftarrow lifelines - \{Phone \ a \ Friend\}
              if friendAnswer \neq null then
15:
16:
                  RETURN friendAnswer
17:
              end if
18:
           end if
19:
         if (CanUse(50:50) and CanRisk()) then
              50:50answers \leftarrow Use(50:50)
20:
              lifelines \leftarrow lifelines - \{50.50\}
21:
22:
              if 50:50 answers.score > threshold<sub>1</sub> then
23:
                  RETURN BEST(50:50answers)
24:
              else
25:
                  RETURN RANDOM(50:50answers)
26:
               end if
27:
           end if
28:
           if Canrisk() then
29:
              RETURN RANDOM(answers)
                                                   > No more lifelines but the player can risk
30:
           end if
31:
           RETIRE()
32:
33:
           Return BestAnswer
       end if
34:
```

the difference between the maximum confidence and the second best confidence is not large enough

the **maximum confidence** for the four answers is low

there is **no confidence** at all in the answers

- 1. Poll the Audience
- 2. Phone a Friend
- 3. 50:50

Use of lifelines

Use of lifelines

Manually created ~350 questions tagged with **DBpedia properties** (top 50) to trained a **centroid classifier**

Create documents with the lexicalization of **RDF triples** with the same subject

Ex. (Leonardo da Vinci, date of birth, 1452-04-15)

Leonardo da Vinci

Portrait of Leonardo by Melzi

Born Leonardo di ser Piero da Vinci

April 15, 1452

Vinci, Republic of Florence

(present-day Italy)

Died May 2, 1519 (aged 67)

Amboise, Kingdom of France

Known for Diverse fields of the arts and

sciences

Notable work(s) Mona Lisa

The Last Supper The Vitruvian Man Lady with an Ermine

Style High Renaissance

Signature Visconator de Stra

Question tagged with **DBpedia property** by the <u>classifier</u> and **Named Entities**

Extract from documents the list of passages (RDF triples) with the corresponding DBpedia property and Named Entities

Leonardo da Vinci

Portrait of Leonardo by Melzi

Born Leonardo di ser Piero da Vinci

April 15, 1452

Vinci, Republic of Florence

(present-day Italy)

Died May 2, 1519 (aged 67)

Amboise, Kingdom of France

Known for Diverse fields of the arts and

sciences

Notable work(s) Mona Lisa

The Last Supper The Vitruvian Man Lady with an Ermine

Style High Renaissance

Signature Visconator de Stra

Preliminary Experiment

Dataset 2010 CLEF QA Competition

10.700 documents from European Union legislation and European Parliament transcriptions

200 questions in English and Italian

Metrics a@n (success@n) and MRR

Preliminary Experiment

Alone

Only the Distributional scorer is adopted, no other scorers in the pipeline

Term Overlap

Lemma+POS Overlap

Lemma+POS Density

Exact Term Sequence

Distributional Scorer

Combined

Distributional scorer and others with CombSum

Baseline: distributional filter

is **removed**

Term Overlap
Lemma+POS Overlap
Lemma+POS Density
Exact Term Sequence
Distributional Scorer

Results for English

	Run	a@1	a@5	a@10	a@30	MRR
alone	TTM	0.060	0.145	0.215	0.345	0.107
	RI	0.180	0.370	0.425	0.535	0.267‡
	LSA	0.205	0.415	0.490	0.600	0.300‡
	LSARI	0.190	0.405	0.490	0.620	0.295‡
combined	baseline	0.445	0.635	0.690	0.780	0.549
combined	baseline TTM	0.445 0.535	0.635 0.715	0.690 0.775	0.780 0.810	0.549
combined						
combined	TTM	0.535	0.715	0.775	0.810	0.6141

Significance wrt. the baseline (†)

Significance wrt. the TTM (‡)

Results for Italian

	Run	a@1	a@5	a@10	a@30	MRR
alone	TTM	0.060	0.140	0.175	0.280	0.097
	RI	0.175	0.305	0.385	0.465	0.241‡
	LSA	0.155	0.315	0.390	0.480	0.229‡
	LSARI	0.180	0.335	0.400	0.500	0.254‡
combined	baseline	0.365	0.530	0.630	0.715	0.441
combined	baseline TTM	0.365	0.530 0.565	0.630 0.645	0.715 0.740	0.441 0.5391 [†]
combined						
combined	TTM	0.405	0.565	0.645	0.740	0.5391†

Significance wrt. the baseline (†)

Significance wrt. the TTM (‡)

