
Semantic Models
for Question Answering

 Piero Molino

Semantic Models
for Question Answering

Piero Molino

Università degli Studi di Bari Aldo Moro
Dipartimento di Informatica

Dottorato in Informatica XXVII ciclo

S.S.D.: INF/01

Supervisor: Dott. Pasquale Lops

Coordinator: Prof. Donato Malerba

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Computer Science

Final Exam 2015

i

Submitted February 2015
Copyleft � 2015 by Piero Molino

This work is licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-sa/4.0/

Cover design by Nicolò Loprieno (FF3300)
Graphics generated with Rosemantic by Piero Molino
https://github.com/w4nderlust/Rosemantic

This thesis is dedicated to my dad,
who always supported me during my university years.

This closes the circle.

Contents

Contents iii

List of Figures vi

List of Tables viii

List of Algorithms x

List of Abbreviations xi

Acknowledgments xii

Abstract 1

1 Introduction 2
1.1 Research Outline . 3
1.2 Main Contributions . 4
1.3 Thesis Overview . 5
1.4 Origins . 5

I Semantics in Question Answering 7

2 Question Answering 8
2.1 Intelligent Systems to Answer Questions 8
2.2 Background . 9

2.2.1 Closed vs. Open domain 9
2.2.2 Factoid vs. non-Factoid 9

2.3 Architecture . 12
2.3.1 Natural Language Analysis 13
2.3.2 Search Engine . 15
2.3.3 Feature Extraction . 17
2.3.4 Ranking . 18

iii

CONTENTS iv

3 Semantics 20
3.1 Distributional Semantic Models 20

3.1.1 Co-occurrence Matrix Construction 23
3.1.2 Latent Semantic Analysis 23
3.1.3 Random Indexing . 24
3.1.4 Latent Semantic Analysis over Random Indexing 26
3.1.5 Continuous Skip-gram Model 27

3.2 Distributional Semantic Models Integration in Question Answering 28

4 Learning to Rank 32
4.1 Machine Learning for Ranking 32
4.2 Approaches . 34

4.2.1 Pointwise . 34
4.2.2 Pairwise . 35
4.2.3 Listwise . 35

4.3 Evaluation Metrics . 36
4.3.1 Mean Reciprocal Rank . 36
4.3.2 Normalized Discounted Cumulative Gain 36

4.4 Random Forests . 37

II Experiments 39

5 Passage Retrieval Experiments 40
5.1 Experiment Description . 40
5.2 Dataset . 41
5.3 Analysis of the 2010 CLEF QA Competition Participants 42
5.4 Experimental Setup . 43
5.5 Experimental Results . 44

6 Experiments with Community Question Answering 46
6.1 Experiment Description . 47
6.2 Background . 48

6.2.1 Community and non-Factoid Question Answering 48
6.2.2 Expert Finding . 49
6.2.3 Comprehensive Approaches 52

6.3 Adopted Features . 52
6.3.1 Textual Features . 52
6.3.2 User Features . 61
6.3.3 Network Features . 66

6.4 Dataset . 68
6.4.1 Yahoo! Answers 2011 . 69
6.4.2 Yahoo! Answers Manner Questions 70

CONTENTS v

6.5 Experimental Setup . 70
6.5.1 Learning to Rank for Best Answer Prediction 70

6.6 Experimental Results . 72
6.6.1 Performance Analysis (Yahoo! Answers 2011) 72
6.6.2 Detailed Analysis of Proposed Features 75
6.6.3 Performance Analysis (Yahoo! Answers Manner Questions) 78
6.6.4 Question Categories . 79
6.6.5 Di�erent Algorithms . 80

6.7 Summary . 81

III Applications 82

7 An Artificial Player for “Who Wants to Be a Millionaire?” 83
7.1 Introduction . 83
7.2 Rules of the Game . 85
7.3 Background . 86

7.3.1 Language Games . 86
7.3.2 Question Answering for Machine Reading and Answer

Validation . 88
7.3.3 Question Answering over Linked Data 90

7.4 Artificial Player Architecture . 91
7.5 Question Answering . 94

7.5.1 Using DBpedia as Knowledge Source 94
7.6 Answer Scoring . 96
7.7 Decision Making . 100
7.8 Experimental Evaluation . 104

7.8.1 Experiment 1: Evaluation of the Performance of QA and
Answer Scoring . 105

7.8.2 Experiment 2: Evaluation of the Artificial Player 117
7.9 Summary . 122

IV Conclusion 123

8 (Research) Question Answering 124
8.1 Future Work . 126

Bibliography 128

List of Figures

2.1 QuestionCube architecture . 13
2.2 Natural language analysis module 14
2.3 Search engine module . 15
2.4 Single search engine . 16
2.5 Candidate answers feature extraction module 17
2.6 Ranking module . 19

3.1 A (bidimensionally projected) depiction of the portion of seman-
tic space around the word “mouse” 21

3.2 An example of vector representation of words in a DSM 22
3.3 An example of term ◊ term matrix M 24
3.4 A depiction of SVD matrices . 25
3.5 Term Vector construction in Random Indexing 26
3.6 The architecture of the Continuous Skip-gram Model 27
3.7 Semantic similarity among question vector q and answer vector a 31

4.1 Learning to Rank setting . 33

6.1 The graph of relations between askers, questions, and answerers
(left) and the three types of Expertise Networks derived by it
(right). 67

6.2 MRR and DCG computed for the first n positions of the ranking,
for the di�erent features families, plus the BM25 baseline and the
full set of features. 76

7.1 An example of “Who Wants to Be a Millionaire?” question. . . . 86
7.2 Artificial Player architecture. 92
7.3 Leonardo da Vinci infobox. 96
7.4 Variability of the score assigned to the correct answer when Poll

the Audience lifeline is used. 104
7.5 Distribution of negative questions per level of the game. 105
7.6 Decrease of accuracy for ablation of feature groups. 113

vi

LIST OF FIGURES vii

7.7 Per level accuracy of system and human performance for English. 115
7.8 Per level accuracy of system and human performance for Italian. 115
7.9 Plot of the average income for di�erent values of the threshold. . 117
7.10 Distribution of the levels reached during the game by the players. 119
7.11 Distribution of the money earned by the players (in log scale). . 120
7.12 Distribution of games reaching a specific level. 120
7.13 Distribution of games ended with the income in a specific interval.121
7.14 Distribution of the lifelines used during the game. 121

List of Tables

5.1 Evaluation Results on ResPubliQA 2010 Dataset for English. . . 44
5.2 Evaluation Results on ResPubliQA 2010 Dataset for Italian. . . . 45

6.1 Visual Property features . 53
6.2 Readability features . 54
6.3 Informativeness features . 54
6.4 Overlap features . 57
6.5 Frequency features . 58
6.6 Density features . 58
6.7 Machine Translation features . 60
6.8 Other features . 60
6.9 Distributional-Semantics-based features 60
6.10 User Profile features . 62
6.11 Question Answer features . 63
6.12 Category features . 65
6.13 Behavioral features . 66
6.14 Network features . 68
6.15 Predictive power of the learning to rank framework trained on

di�erent feature subsets, on the Yahoo! Answers 2011 dataset. . . 73
6.16 Ablation test. 74
6.17 Distributional-Semantics-based features ablation ranking 75
6.18 Network features ablation ranking 77
6.19 Predictive power of the learning to rank framework trained on

di�erent feature subsets, on the Yahoo! Answers Manner Ques-
tions dataset. 78

6.20 MRR scores obtained with single feature families on the Yahoo!
Answers 2011 dataset. 79

6.21 MRR scores obtained with di�erent Learning to Rank algorithms
on the Yahoo! Answers 2011 dataset. 80

7.1 List of passages returned by the Question Answering module for
the question “Who directed Blade Runner?”. 93

viii

LIST OF TABLES ix

7.2 Performance of the top-15 configurations (averaged over all the
questions) on the Italian dataset. 106

7.3 Performance of the top-15 configurations (averaged over all the
questions) on the English dataset. 107

7.4 Best and worst performance of each single criterion along with
its configuration (averaged over all the questions) for Italian. . . 108

7.5 Best and worst performance of each single criterion along with
its configuration (averaged over all the questions) for English. . . 108

List of Algorithms

1 Random Forests . 38
2 Decision making algorithm . 103

x

List of Abbreviations

ABAN Asker Best-Answerer Network

AI Artificial Intelligence

ARN Asker Replier Network

AS Answer Scoring

CBEN Competition-Based Expertise Network

CQA Community Question Answering

DSM Distributional Semantic Model

ES Exact Substring

IR Information Retrieval

LCS Longest Common Subsequence

LR Logistic Regression

LSA Latent Semantic Analysis

ML Machine Learning

MRR Mean Reciprocal Rank

NDCG Normalized Discounted Cumulative Gain

NLP Natural Language Processing

QA Question Answering

RF Random Forests

RI Random Indexing

SVD Singular Value Decomposition

TL Title Levenshtein

TTM Term-Term co-occurrence Matrix

WWBM Who Wants to Be a Millionaire?

xi

Acknowledgments

“Mostly it is loss which teaches us about the worth of things.”
– Arthur Schopenhauer, Parerga and Paralipomena

This thesis ratifies the end of a big chunk of my life.
As one could expect, I have mixed feelings about it, combining melancholy

for the time spent in university with excitement for the new experiences to come.
Maybe this is what it means to grow up, to realize that there’s never black or
white, but everything is made up of di�erent aspects and there are just several
shades of grey.

In the last years I had a lot trouble and many times I felt discouraged and
powerless. But in the end my willpower prevailed and I overcome most of the
problems I encountered. Only now, at the end of this path, I realize that all
what I went through left a lot inside me and let me became a richer person and
more conscious of my limits and my strengths.

In this process I encountered many people that helped me out with precious
help during bad times. Maria, Paola, Antonio and Gabriella have been invalu-
able, but there are several others. They are too many to mention, but I want
to thank them all even if they will never read these words.

Some other people actually helped me out during my PhD and in my research
and in writing my thesis, and those are the one I would like to thank.

I won’t thank Pasquale Lops, my supervisor, because Umberto Eco says it’s
tacky, but I would like to thank all the members of the SWAP research group
for their support, in particular Pierpaolo and Annalina, that helped me become
a better researcher and shared most of my research interests.

I would also like to thank all the people in the LACAM lab, always available
for a chat and a smile.

The most formative experience I went through these years was the internship
at Yahoo! Labs Barcelona, and it would not have been possible without the
kindness and support of Luca Aiello. I also would like to thank all the people
in the lab that made that experience unforgettable and in particular Alejandro
Jaimes and Ricardo Baeza-Yates who gave me the opportunity.

Some insights in this thesis stemmed from discussion I had with a lot of great

xii

Acknowledgments xiii

researchers from all around the world, who kindly shared their opinion on my
work during conferences and summer schools. The ones I would like to thank
the most are W. Bruce Croft, Giuseppe Attardi, Hugo Zaragoza, Massimiliano
Ciaramita, Julio Gonzalo, Hui Fang, Bernardo Magnini, John Tait, Liadh Kelly
and Roberto Navigli.

Finally, one of the things I will keep with me forever of this PhD period
are the fantastic friends I made from all around the world, meeting them was
probably the most valuable thing pursuing a PhD enabled me to do and their
enthusiasm gave me the strengh to carry on, so thank you all.

Abstract

In this thesis we investigate the possibility to adopt distributional semantic rep-
resentations for Question Answering. We propose a way to represent questions
and answers and calculate their semantic relatedness with di�erent Distribu-
tional Semantic Models. We furthermore combine the semantic relatedness with
several other criteria using a Learning to Rank approach in order to exploit the
additional information they bring and assess their usefulness. This method has
been tested on large-scale real-world settings of European Union legislation and
social Q&A communities (Yahoo! Answers) on the task of passage retrieval
and best answer prediction with substantial improvement over state-of-the-art
baselines. We tested our approach in a language game application, building an
artificial player for “Who Wants to Be a Millionaire?” tv quiz show capable of
outperforming human players both in the answering accuracy and in the ability
to play the game.

1

1

Introduction

“The Answer to the Great Question... Of Life, the Universe and Ev-
erything... Is... Forty-two,” said Deep Thought, with infinite majesty
and calm.

– Douglas Adams, The Hitchhiker’s Guide to the Galaxy

In a world where everyone is always connected and information is always
available, people do not need to keep everything in memory. This enables the
possibility to learn new things and suggest a shift in the attention from search
technologies to technologies that actually help us find something new, have new
insights and connect pieces of knowledge. The most natural and straightforward
way for a human being to do so is asking questions to other people, in natural
language. Language is the main way human have to share their knowledge and
is probably the most important technology humans have been able to build. It
is a unique characteristic of human beings and is able to shape our mind and
influence our perception and interpretation of reality. Studying and understand-
ing language not only lets us dive deeper in our own learning process, but makes
us learn about ourself.

Using language to ask and answer questions is a “too human” activity and
this is why trying to create a computer program capable of doing it is so chal-
lenging and fascinating, it is the same fascination at the very bottom of every
Artificial Intelligence (AI) study. The implications of an AI fully capable of
understanding the meaning of questions and give convincing answers would be
groundbreaking and will force us to revise our definitions of intelligence and of
human race.

This kind of AI will also be an incredible “tool for thought” and a fantastic
learning companion used by everyone for pursuing their knowledge and make
new discoveries. It would probably redefine the idea of intelligence as we know
it and be the best tool humans have for knowledge enrichment. This is also the
direction most commercial search engines are heading to: creating an intelligent

2

Introduction 3

assistant to help you search for things. They are trying to build true Question
Answering (QA) systems, capable of answering natural language questions. In
February 2011, IBM’s Watson supercomputer powered by DeepQA technology
was able to beat the two highest ranked players of the quiz show “Jeopardy!”
[Ferrucci et al., 2013, 2010], and it was a strong display of what this kind of
technology is actually capable of.

1.1 Research Outline
This thesis is a contribution towards building such AI. It focuses mainly on one
aspect: the representation of meaning. Being able to represent the meaning of
both questions and answers makes it possible to match them more precisely and
in the end makes it possible to find more accurate answers.

The way to represent meaning we decided to adopt is mapping language to
geometrical spaces built observing how words occur with each other inside texts.
This approach is called Distributional Semantics and arises from the study of
context, in particular from Wittgenstein’s argument that “meaning is use” and
words are not defined by reference to the objects they designate, nor by the
mental representations one might associate with them, but by how they are
used [Wittgenstein, 1953].

The most important task for a QA system is the ranking of the answers to
a specific question and we will propose several criteria based on Distributional
Semantics for ranking candidate answers.

Doing so, the research questions we want to answer are:

• RQ1. Are the distributional semantic representations good representations
for the meaning of questions and answers?
We address this question building a QA system that exploits this repre-
sentation and testing it on two big scale problems.

• RQ2. Can distributional semantic representations be combined with other
criteria in order to obtain a better ranking of the answers?
In order to answer this question we propose to combine Distributional
Semantics with several other criteria for answer ranking in a Machine
Learning setting. We experimented on huge scale dataset the combination
of criteria and the contribution of each criterion family to the quality of
the ranking.

We also wanted to investigate if the QA technology we built is capable of
being employed in real world scenarios, leveraging common sense knowledge and
competing with humans, in a way that does not depend on a specific language.

This arises two other research questions:

Introduction 4

• RQ3. To what extent can a QA system be designed in a language-independent
way, by preserving its e�ectiveness?
We cope with this question by assessing the e�ectiveness of a QA and
answer scoring framework for English and Italian. The QA framework
leverages Wikipedia and DBpedia open knowledge sources, while the an-
swer scoring module supplies several criteria to score candidate answers
and to e�ectively combine scores through machine learning techniques.

• RQ4. Is it possible to develop an artificial player for the WWBM game
able to outperform human players?
We address this question by comparing the accuracy of the human players
against that of an artificial player built using the QA framework in playing
“Who Wants to Be a Millionaire?” (WWBM). We evaluate the ability of
the artificial player to play the WWBM game with all its rules, i.e. usage
of “lifelines”, answering in a condition of uncertainty, retiring from the
game by taking the earned money.

1.2 Main Contributions
The contribution of this thesis is three-fold: theoretical, empirical and algorith-
mic.

Theoretical contribution

• The first Distributional-Semantics-based approach for representing ques-
tions and answers

• A model for ranking answers based on Distributional Semantics

• A general language-independent QA architecture

• A new answer scoring approach that exploits an high number of criteria

• The architecture of an AI capable of beating humans in playing WWBM

Empirical contribution

• An empirical evaluation of the proposed Distributional-Semantics-based
approach

• The most large scale evaluation of di�erent answer ranking criteria yet

• The evaluation of answer ranking criteria on di�erent question types

• A comparison between a QA system and humans on answering WWBM
questions

Introduction 5

• A comparison between a QA system and humans on playing WWBM
games

Algorithmic contribution

• A decision making algorithm for playing WWBM

A further contribution of this thesis is the creation of a WWBM dataset
made freely available (see Chapter 7).

1.3 Thesis Overview
The thesis is organized as follows.

In the next chapter (Chapter 2) an overview of the QA field is given, with
description of Open Domain and Closed Domain systems and the distinction of
Factoid and non-Factoid QA. The chapter contains also the description of our
proposed QA architecture.

In Chapter 3, we give an overview of Distributional Semantics and we de-
scribe several models we adopt. The chapter contains also the description of
our proposed Distributional-Semantics-based representations and the ranking
model.

In Chapter 4, we describe the Learning to Rank setting we adopt for com-
bining di�erent ranking criteria, giving also an overview of the main approaches
and describing the algorithm we adopt.

In Chapter 5, we show the results of a passage retrieval experiment carried
out on the ResPubliQA 2010 Dataset. The aim is to test the e�ectiveness of
our proposed method of integration of Distributional Semantic Models in a QA
system.

In Chapter 6, we describe an extended experiment carried out on two massive
real-world datasets extracted from Yahoo! Answers. We give an overview of the
community / social QA and expert finding research and we describe a huge
variety of features to combine our proposed ones to.

In Chapter 7, we propose our artificial player for WWBM. We describe the
history of AIs playing language games, we propose our architecture and scoring
criteria, a strategy for decision making, and we compare against humans both
in terms of accuracy in answering questions and ability to play the game.

Finally we draw conclusions in Chapter 8 answering the research questions.

1.4 Origins
The following publications form the basis of chapters in this thesis.

• Chapter 2 is based on [Molino and Basile, 2012].

Introduction 6

• Chapter 3 is based on [Molino et al., 2012] and [Molino and Aiello, 2014].

• Chapter 4 is based on [Molino and Aiello, 2014].

• Chapter 5 is based on [Molino et al., 2012].

• Chapter 6 is based on [Molino and Aiello, 2014] and on the journal paper to
appear named “Expert Finding meets Distributional Semantics for Social
Question Answering”.

• Chapter 7 is based on [Molino et al., 2013a] and on the journal paper to ap-
pear named “Playing with Knowledge: A Virtual Player for “Who Wants
to Be a Millionaire?” that Leverages Question Answering Techniques”.

Finally, this thesis draws from insights and experiences gained in [Molino
et al., 2013b, Molino, 2013].

Part I

Semantics in Question
Answering

7

2

Question Answering

“Maybe the only significant di�erence between a really smart simulation
and a human being was the noise they made when you punched them.”

– Terry Pratchett, The Long Earth

In this chapter we give an overview of the Question Answering field, with
description of Open Domain and Closed Domain systems and the distinction of
Factoid and non-Factoid QA. The chapter contains also the description of our
proposed QA architecture.

2.1 Intelligent Systems to Answer Questions
Question Answering (QA) emerged in the last decade as one of the most promis-
ing fields in Artificial Intelligence, as highlighted by the organization of several
competitions in international conferences [Voorhees and Tice, 1999, Peñas et al.,
2010], but the first studies can be dated back to 1960s [Green et al., 1961, Sim-
mons, 1965].

The task of QA is to find correct answers to users’ questions expressed in
natural language. This is carried out exploiting techniques borrowed from In-
formation Retrieval (IR) and Natural Language Processing (NLP) and Machine
Learning (ML). Di�erently from search engines, which output a lists of full-text
documents that users have to check in order to find the needed information,
QA systems are able to answer users’ questions with answers that could range
from exact facts, dates, names, places, to passages of text like descriptions,
summaries or explanations.

In recent years some enterprise applications have shown the potential of the
state-of-the-art QA technology, such as the IBM’s Watson/DeepQA [Ferrucci
et al., 2010, Ferrucci, 2011]. This system was able to outperform the human
champions of the popular American TV quiz “Jeopardy!”, a game that requires

8

Question Answering 9

vast knowledge, common sense and language understanding. This kind of goal
would be considered extremely di�cult to achieve just ten years ago.

2.2 Background
QA systems are usually classified depending on the kind of data they are able
to access and the kind of questions and answers they are able to return to users.

2.2.1 Closed vs. Open domain
Closed-domain QA refers to systems working in specific and limited domains
(such as medicine or finance). Dealing with questions in a Closed-domain QA
is generally an easier task since some kind of domain-specific knowledge can
be exploited, and only a limited type of questions are accepted, such as those
asking for descriptive rather than procedural information.

On the other hand, Open-domain QA does not refer to a specific domain and
deals with more general questions. Dealing with questions in an Open-domain
QA generally requires the use of world knowledge to search for an answer.

The Web is generally used as a source of knowledge and the redundancy of
information is exploited as a signal for the quality of the answer, for example
selecting the answers according to their frequency among the search results
[Dumais et al., 2002, Lin, 2007]. This technique is often complemented with
textual pattern extraction and matching to find the exact answers and rank
them by confidence [Harabagiu et al., 2000a, Pa�ca and Ribarov, 2004].

2.2.2 Factoid vs. non-Factoid
Another classification of QA systems distinguishes between factoid QA and non-
factoid QA. The former deals with questions whose answers are usually named
entities (names of persons, organizations, locations) or facts (time expressions,
quantities, monetary values, etc), while the latter focuses on causation and
reason questions, and the expected answers have the form of passages of text
(sentences, groups of sentences, paragraphs or short texts).

The passage retrieval step is, anyway, fundamental in both factoid and non-
factoid QA as in the former the answers are extracted from the obtained pas-
sages, while in the latter the passage corresponds to the candidate answer itself,
even if the passage for non-factoid QA is much longer, as shown in [Verberne
et al., 2008].

Factoid QA received wide attention and a variety of di�erent approaches and
systems are described in literature. For the sake of brevity we describe only the
most prominent approaches. Factoid QA systems heavily rely on information
extraction techniques, including the adoption of linguistic patterns to identify

Question Answering 10

the specific answer. For Closed-domain QA, QA systems working in specific and
delimited domains with a relatively small set of documents, NLP methods are
always used for a deeper understanding of users’ questions and for the matching
of passages extracted from documents [Harabagiu et al., 2000b, Hovy et al.,
2000]. The most commonly adopted linguistic analysis steps include: stemming,
lemmatization with dictionaries, part-of-speech tagging, parsing, named entity
recognition, lexical semantics (Word Sense Disambiguation) and semantic role
labeling. Their adoption plays a key role, as stressed in [Chen et al., 2001,
Moldovan et al., 2003], since there is likely to be really few answers to users’
questions and the way in which they are expressed may be significantly di�erent
from the question. Furthermore, they are helpful also for question classification
[Li and Roth, 2006]. Thus NLP is essential for uncovering complex lexical,
syntactic, or semantic relationships between questions and candidate answers.

Open-domain QA systems for factoid QA adopt the Web as source of knowl-
edge, so they can exploit the redundancy of this data source, selecting the an-
swers according to their frequency among the web search results [Dumais et al.,
2002, Lin, 2007]. Alongside with this technique, textual pattern extraction and
matching is used to find the exact answers and to rank them by confidence
[Harabagiu et al., 2000a, Pa�ca and Ribarov, 2004]. We don’t use redundancy
based techniques as we will be dealing with selected and highly accurate source
of information that do not usually contain more than few entries of the correct
answer.

In the last few years non-factoid QA received more attention. It focuses
on causation, manner and reason questions, where the expected answer has the
form of a passage of text. Depending on the structure of the corpus, the passages
can be single sentences, groups of sentences, paragraphs or short texts.

The presence of annotated corpora made available for the competitions in-
side the Text REtrieval Conference (TREC) [Voorhees and Tice, 1999] and Cross
Language Evaluation Forum (CLEF) [Peñas et al., 2010], alongside with di�er-
ent sources, such as hand-annotated answers from Wikipedia [Verberne et al.,
2010], hand-built corpora [Higashinaka and Isozaki, 2008], Frequently Asked
Questions lists [Soricut and Brill, 2006, Agichtein et al., 2008] and Yahoo! An-
swers Extracted corpus [Surdeanu et al., 2011], allows to use ML techniques to
tackle the problem of ranking the passages for further extraction in factoid QA
[Agarwal et al., 2012].

In particular, Learning to Rank (MLR) [Liu, 2009] algorithms are used in
order to output a sensible ranking of the candidate answers. MLR algorithms
apply ML techniques to the problem of ordering a set of items depending on
the queries. In the QA case the items are answers and the queries are the
questions. Usually, the features for the learning task are di�erent similarity
measures between the query and the item. In the IR tasks TF-IDF, BM25 and

Question Answering 11

Language Modeling based features are often used. In [Verberne et al., 2008] the
adoption of linguistically motivated features is shown to be e�ective for the QA
task, while in [Verberne et al., 2011] di�erent MLR algorithms were compared
over the same set of features.

In [Punyakanok et al., 2004] the authors adopted a distance function for
calculating the similarity of question and answers that calculates an approximate
tree matching of their parse trees. The idea is expanded in [Shen and Joshi,
2005], where the authors trained dependency tree kernels to compute similarity
in a supervised fashion. In [Sun et al., 2005] both syntactic and semantic parsing
are adopted in order to improve matching. The Ephyra framework [Schlaefer
et al., 2007] leverages semantic role labeling to identify semantic structures in
documents that match those in the question. Predicate-argument structures
taken from semantic role labeling built from questions and expected answers
have been also shown to be useful for the task, as reported in [Bilotti, 2010].
However, semantic approaches can also be exploited to provide an enriched
visual representation of the answer in the form of a semantic graph, as described
by [Dali et al., 2009].

The exploitation of structural and semantic information has been shown to
help improve answer ranking. In [Severyn and Moschitti, 2012] the adoption
of tree kernels over shallow parse structures helps in obtaining a significant
improvement in answer ranking. WordNet synsets are used for expansion and
comparison in [Verberne et al., 2011], while in [Higashinaka and Isozaki, 2008]
a wide range of semantic features is considered: by exploiting WordNet and
gazetteers, semantic role labeling and extracted causal relations, the authors
obtained accurate results in answering Why-questions. A comprehensive large
scale evaluation, alongside with the introduction of new features based on trans-
lation models and web correlation, was carried out in [Surdeanu et al., 2011],
where the authors also adopt super-senses (coarse grained WordNet concepts)
as lexicalization level.

We adopt similar linguistic techniques as the cited ones, but with several im-
portant di�erences. In particular, for the syntax analysis we rely on dependency
parsing in order to allow real-time question analysis and answer re-ranking,
while for semantics, we adopt Distributional Semantic Models (DSMs) rather
than knowledge based approaches. This is novel in the QA field, especially for
answer re-ranking. DSMs allow us to calculate semantic similarity indepen-
dently of lexicons and independently from the language of the question and the
documents.

Machine translation has been applied to factoid QA in order to automatically
learn question transformations. In [Echihabi and Marcu, 2003] the authors
adopted IBM model 4 [Brown et al., 1993] for the task, including lexical, parse-
tree and named entities features. An alternative approach is presented in [Cui

Question Answering 12

et al., 2005], where only the most significant words are aligned in the translation
model and the similarity of the dependency paths of questions and answers are
computed as mutual information of correlations.

Statistical models have been applied to the task of non-factoid QA: in [Sori-
cut and Brill, 2006] the authors extracted QA pairs from FAQs obtained from
the Web in an unsupervised manner. They show how di�erent statistical models
may be used for the problems of answer ranking, selection and extraction.

The importance of understanding how questions transform into answers has
been investigated deeply. In [Agichtein et al., 2001] lexical transformations
learned from questions and web queries pairs help in retrieving good candidate
answers for both factoid and non-factoid QA. Other evidence of the usefulness
of translation models in improving factoid QA is given in [Murdock and Croft,
2005] and [Xue et al., 2008]. Machine translation has been used also as a query
expansion model successfully applied to FAQ retrieval in [Riezler et al., 2007].

In our work we adopt IBM Model 2 [Brown et al., 1993] for single word
translations from the “question language” to the “answer language” and exploit
the probability of the translation as a MLR feature.

2.3 Architecture
In order to answer our research questions, we built a QA framework distinctively
focused on non-factoid QA that implements most of the characteristics that were
proposed in literature. This enables us to add DSMs to a well established set
of features so that the performance gain obtainable with those models can be
directly put in comparison with strong baselines.

The built framework is called QuestionCube and it is a multilingual QA
framework built using NLP and IR and MLR techniques [Molino and Basile,
2012, Molino et al., 2012].

The main aim of the architecture, shown in Figure 2.1, is to enable the
creation of a QA system simply by dynamical composition of components, as
suggested in [Schlaefer et al., 2006].

The high level of abstraction of the components allows to add support for a
new language just by creating new interchangeable analyzers which implement
the algorithms for that specific language.

The system works in two separate steps. At indexing time, the system
builds two di�erent indices, one for documents and one for passages belonging
to each document. They contain the original text alongside with the linguistic
annotations coming from the NLP pipeline.

At query time, the user’s question q is analyzed by a NLP pipeline. The
result of this pipeline is a text tagged with linguistic annotations useful for a
deeper representation and deeper question-answer matching. The question q

Question Answering 13

DocumentoDocumentoDocumentoDocumento
Document

Document
Document

Indexing

Document
Index

Indexing

Retrieval

Question

Natural
Language
Analysis

Search Engine

Risposta
Risposta

Risposta
Answer

Feature
Extraction

Passage
Index

Question
Analysis

Document
Analysis

Ranking

Figure 2.1: QuestionCube architecture

is then passed to the search engines, from which a list of candidate answers
containing passages p is obtained.

Then, the feature extraction pipeline is responsible for extracting features
fp from the candidate answers passages p retrieved by search engines. Those
features fp are adopted by the ranking component to output the ranked list of
candidate answer passages pranked that is presented to the user.

2.3.1 Natural Language Analysis
The natural language analysis module consists of a pipeline of NLP analyzers
and a data-structure to contain linguistic annotated text as shown in Figure 2.2.
The NLP pipeline is easily configurable depending on the application domain
of the QA system.

NLP analyzers are provided for both English and Italian. The stemmer is
implemented with Snowball1 both for English and Italian. The lemmatizer is
realized by exploiting the morpho-syntactic analyzer of WordNet API [Fellbaum,
1998] for English, while Morph-it [Zanchetta and Baroni, 2005] is exploited for
Italian. Named Entity Recognition (NER) is performed by a machine learning
classifier based on Support Vector Machines [Cortes and Vapnik, 1995] using an
open-source tool called YAMCHA [Kudo and Matsumoto, 2003]. The same tool
is used for the chunker component. PoS tags and lemmas are adopted as features

1
Available on-line: http://snowball.tartarus.org/

Question Answering 14

Natural Language
Analysis

Question
NLP Pipeline

Search Engine

Text

Annotated Text

Tokenization

Stop Word
Removal

Stemming

Lemmatization

Named Entity
Recognition

Dependency
Parsing

Chunking

PoS Tagging

Indexer

Semantic Role
Labeling

SuperSense
Tagging

Word Sense
Disambiguation

Document

Figure 2.2: Natural language analysis module

for chunking and NER. The Word Sense Disambiguation (WSD) uses the UKB
algorithm [Agirre and Soroa, 2009], which is a graph-based technique based on
a personalized version of PageRank [Brin and Page, 1998] over WordNet graph.

Alongside with this components, wrappers to popular NLP libraries such as
Stanford CoreNLP [Manning et al., 2014]2 and ClearNLP suite [Choi, 2012]3

have been developed, enabling dependency parsing and semantic role labeling
for English.

Super-sense tagging, the task that assigns a WordNet coarse grained synset
to the verbs, nouns and adjectives in a sentence, is carried out implementing the
algorithm in the SuperSense Tagger proposed by Ciaramita and Altun [2006]4.

2
http://nlp.stanford.edu/software/corenlp.shtml

3
http://clearnlp.com

4
http://sourceforge.net/projects/supersensetag

Question Answering 15

The output of the NLP analyzers is a set of tags that are added to the text
representation of both passages p (at indexing time) and questions q (at query
time). Those are passed respectively to the Indexer and the Search Engine.

2.3.2 Search Engine

Document
Index

Candidate
Answer

Passages

Annotated
Question

Passage
Index

Search Engine

Query
Generator #1

Parallel
Engine

Search Engine
#1

Query
Generator

Search Engine

Query
Generator #N

Search Engine
#N

Aggregator

Figure 2.3: Search engine module

The search engine module is designed to allow the integration of several
information retrieval strategies, and thus the aggregation of their results, as
shown in Figure 2.3. Since the parallel searcher enables modularity, it is possible
to add an arbitrary number of di�erent search engines. When a new question
q comes, the parallel searcher calls each engine and merges their outputs in a
single list P .

The list P contains all the candidate answer passages p collected from all
the engines, each one with a reference to the engines that retrieved it and the
score assigned by each engine.

Question Answering 16

Each search engine has its own query generation component, as the query
syntax may change among di�erent engines. Moreover, each query generator
can use di�erent lexicalizations: terms, stems, lemmas, WordNet synsets and so
on, to generate the query representation. This approach makes the framework
highly modular and flexible and allows adding a new search engine inside the
framework with minimal e�ort.

The main goal of using more than one search engine is to rely on several re-
trieval strategies in order to exploit di�erent levels of lexicalization and di�erent
retrieval models.

Document
Index

Passage
Index

Searcher

Annotated
Question

Query
Generator

Document
Search

Candidate
Answer

Passages

Passage
Search

Figure 2.4: Single search engine

The process performed by each search engine se is described in Figure 2.4.
Each query generator builds the query qese for its search engine from the lin-
guistically annotated question q provided by the parallel engine. Moreover, the
query generator may implement di�erent query-improvement techniques (such
as relevance feedback and query expansion). Hence, the search engine executes
the query qese to return the list of best scored documents Dse. The passage
index is used to obtain passages P se that are part of the retrieved documents
Dse. These passages P se are merged into one single list P by an aggregation
component and finally passed to the feature extraction pipeline.

The search engines implemented in the framework are based on Apache
Lucene5 and thus implement the BM25 model [Robertson and Zaragoza, 2009],

5
Available at http://lucene.apache.org/

Question Answering 17

TF-IDF [Salton et al., 1975]) based retrieval and Language Modeling (with
Dirichlet priors [Zhai and La�erty, 2001]). All three retrieval models can use
di�erent lexicalizations as tokens, depending on the linguistic annotations added
to the question and the passages.

The query generation component for those searchers allows three di�erent
query-improvement techniques:

• Query expansion through WordNet synonyms of synsets found in the ques-
tion;

• Kullback-Leibler Divergence, a statistical technique that exploits the dis-
tribution of terms in the top-ranked documents [Carpineto et al., 2001,
Lv and Zhai, 2010];

• Divergence From Randomness, a statistical technique that weights the
terms’ distribution with the Bose-Einstein Bo1 weighting scheme [Amati
and van Rijsbergen, 2002].

The WordNet-based query expansion can be used only if the question has been
disambiguated.

2.3.3 Feature Extraction

Candidate
Answer

Passages

Feature Vectors

Feature Extraction

Overlap

OthersDistributional
Semantics

Density Machine
Translation

Frequency

Figure 2.5: Candidate answers feature extraction module

The feature extraction module, sketched in Figure 2.5, contains a pipeline
of feature extractor components that assigns a score to each candidate answer

Question Answering 18

leveraging its textual content and its metadata. At the end of the process, each
candidate answer passage pi carries a feature vector „(pi).

Here we present a small list of linguistic similarity features that are common
in all the experiments that we will describe later. Each experiment can have its
own additional feature set that will be motivated and described on a case-by-case
basis.

• term overlap: counts the ratio of terms in common between the ques-
tion and the answer as |tqflta|

|tq| , where tq is the set of terms belonging to
the question and ta the set of terms belonging to the answer.

• lemma+pos overlap: counts the same formula of term overlap but
considering the concatenation of lemmas and PoS tags instead of simple
terms.

• lemma+pos density: We adopted a slight modification of the Minimal
Span Weighting proposed by Monz [2004] retaining only the local similar-
ity part:

3
| tq fl ta |

1 + max(mms) ≠ min(mms)

4 3
| tq fl ta |

| q |

4

where tq and ta are the sets of concatenations of lemmas and PoS tags
respectively of the question and the answer; max(mms) and min(mms)
are the initial and final location of the shortest sequence of answer con-
catenations containing all the question concatenations. More details in
Section 6.3.1.

• exact sequence: calculates the exact overlap of the sequences of words
in the question and the answer normalized by the length of the question.

For the full list of available features (225 di�erent ones) and for a more
detailed description, see Section 6.3.

2.3.4 Ranking
After the feature vector „(pi) of each candidate answer passage pi has been
extracted by the feature extraction module, the candidate answers passages P

are passed to the ranking module that exploit those features to output a sensible
ranking Pranked. The process is sketched in Figure 2.6.

Depending on the availability of training data (questions with a list of correct
answers) two scenarios should be considered: if there is such training data for
the specified corpus or this training data can be gathered from the users, then
a Learning to Rank model can be learned, otherwise an unsupervised strategy
is available in order to provide a ranking.

Question Answering 19

Ranking

Feature
Vectors CombSum

Learned Ranker
Ranked
Answer

Passages

Learned
Ranking
Model

Figure 2.6: Ranking module

In case of availability of training data, the Learned Ranker component is
adopted. Its training and its use at runtime are described in Chapter 4.

If there is no training data, the CombSum component is used. It implements
the CombSum strategy [Fox and Shaw, 1993] that consists in first normalizing
the values of each feature j in the feature vector „(pi) of each candidate answer
passage pi in P with the z-score normalization [Fox and Shaw, 1993]:

zij = „(pi)j ≠ µj

‡j

where µj in the average of „(p)j , the values of the feature j for all candidate
passages p œ P , and ‡j is the standard deviation of „(p)j . Then all the nor-
malized scored are combined by summing them to obtain an aggregated score
s :

si =
|z|ÿ

j=1

zij

The candidate answer passages pi are finally ranked according to their summed
score si that represents an overall indication of the quality of the answer ac-
cording to all the considered features.

3

Semantics

“But if thought corrupts language, language can also corrupt thought.”
– George Orwell, 1984

In this chapter we give an overview of Distributional Semantics and we
describe several models we adopt. The chapter contains also an overview on
the adoption of semantic models in QA and the description of our proposed
Distributional Semantics based representation and semantic similarity used as
ranking model.

3.1 Distributional Semantic Models
Distributional Semantics Models (DSMs) have gained mass appeal in the joint
area lying at the intersection between Computational Linguistics, Cognitive Sci-
ence and Geometry. These models represent word meanings through contexts:
di�erent meanings of a word can be accounted for by looking at the di�erent
contexts in which the word occurs. Philosophical insight of distributional mod-
els can be ascribed to Wittgenstein’s quote “the meaning of a word is its use in
the language” [Wittgenstein, 1953]. The idea behind DSMs can be summarized
as follows: if two words share the same linguistic contexts they are somehow
similar in their meaning. For example, analyzing the sentences “drink a glass
of wine” and “drink a glass of beer”, we can assume that the words “wine” and
“beer” have similar meaning because they appear in proximity of the same set
of words (drink, a, glass, of).

This insight can be implemented with a geometrical representation of words
as vectors in a semantic space. Each term is represented as a vector whose
components are contexts surrounding it. In this way, the meaning of a term
across a corpus is thoroughly conveyed by the contexts it occurs in, where some
definitions of contexts may be the set of co-occurring words in a document,

20

Semantics 21

in a sentence or in a window of surrounding terms. The word vector is built
analyzing (e.g. counting) the contexts in which the term occurs inside a corpus.
The resulting vector of each word will be closer to the vectors of words that
have a similar meaning and this property can be exploited in order to deal with
synonyms.

memory floppy_disk
ram chip disk hard_disk

printer
computer

device
workstation
pcos

software

operating_system
linux

tux

penguin rabbit
mice

rat

animaldog
cat monkey

insect

mouse

Figure 3.1: A (bidimensionally projected) depiction of the portion of semantic
space around the word “mouse”

A (bidimensionally projected) depiction of the portion of semantic space
around the word “mouse” is shown in Figure 3.1. Concepts that are semantically
closer are also closer in the semantic space, like “mice” and “rat” or “memory”
and “ram”, while distant concepts are far apart, like “software” and “animal”
or “memory” and “insect”.

As for the vector representations, given the sentences “drink a glass of wine”,
“wine is made of grapes”, “drink a glass of beer” and “beer is made of hops”, and
considering word occurring in the same sentence as context, we can represent the
words “wine” and “beer” with the vectors shown in Figure 3.2, simply counting
the number of occurrences.

Semantic spaces have important advantages over other textual features.
They do not require specific text operations, only tokenization is always needed.
They are also language-agnostic and independent of the specific corpus. This
implies low computational cost and independence from any external source.

The earliest and simplest formulation of such a space has root in the Vector

Semantics 22

1 1wine

beer
dr
ink gla
ss

a of wi
ne

be
er

ma
de

is gra
pe
s

ho
ps

1 2 0 0 1 1 1 0

1 1 1 2 0 0 1 1 0 1

Figure 3.2: An example of vector representation of words in a DSM

Space Model [Salton et al., 1975], one early model in Information Retrieval.
Since then, several linguistic and cognitive tasks have taken advantage from
the use of semantic spaces, such as synonym choice in the Test of English as
a Foreign Language (TOEFL) [Landauer and Dumais, 1997], semantic priming
[Landauer and Dumais, 1997, Burgess et al., 1998, Jones and Mewhort, 2007],
similarity of semantic relations [Turney, 2006, Turney and Littman, 2005], essay
grading [Wolfe et al., 1998, Foltz et al., 1999], automatic construction of thesauri
[Schütze and Pedersen, 1995] and word sense induction [Schütze, 1998]. DSMs
have also been adopted to improve significantly many NLP applications [Basile,
2011, Collobert et al., 2011, Turian et al., 2010].

DSMs are also widely used to solve problems related to word similarity and
semantic composition of meanings. A useful survey of the use of VSMs for
semantic processing of text is reported in [Turney and Pantel, 2010], while an
analysis of some compositional operators is described in [Mitchell and Lapata,
2010].

DSMs have not been used directly in QA, while some applications to IR
exist. In [Widdows and Ferraro, 2008] the authors describe a tool which relies
on RI to build an IR model. LSA is widely used in IR to perform term-doc
matrix reduction obtaining good results and significant improvement with re-
spect to the classical Vector Space Model [Deerwester et al., 1990]. In [Schütze
and Pedersen, 1995] an approach to ambiguity resolution in IR is proposed.
The authors describe a sense-based retrieval, a modification of the standard
vector-space model, in which the meanings of a word are inferred by applying
clustering technique to a word space. The similarity between the word vec-
tor and the closest cluster centroid will give the proper sense. The IR system
proposed by the authors gives an improvement in precision with respect to the
word-based retrieval. Moreover, in [Basile et al., 2011], an IR system able to
combine word sense disambiguation and word sense discrimination based on RI
is proposed. The combination of WSD and RI is performed by a semantic en-
gine, SENSE, which is able to combine several document representations in a
unique framework.

Semantics 23

We aim at exploiting DSMs for performing Question Answering, a task to
which they have never been applied before, exploring how to integrate them
inside a preexistent QA system. Our insight is based on the observation of
the capability of these spaces to capture paradigmatic relations between words.
Exploiting those relations to calculate a measure of semantic similarity should
result in a ranking of candidate answers based on their semantic relatedness
with respect to the question asked. We think this kind of similarity will be a
strong feature to adopt, as it will integrate a way of dealing with synonyms.

In the following of the chapter, we first describe how we build the semantics
space, then we describe the adopted DSMs and finally we describe our strategy
to adopt them inside our QA system.

3.1.1 Co-occurrence Matrix Construction
Our semantic spaces are modeled by a co-occurrence matrix. The linguistic con-
text taken into account is a window w of co-occurring terms. In our experiments
we adopt a window of size 5 centered on the current term. Given a reference
corpus1 and its vocabulary V , a n ◊ n co-occurrence matrix is defined as the
matrix M = (mij) whose coe�cients mij œ R are the number of co-occurrences
of the words ti and tj within a predetermined distance w.

The term◊term matrix M, based on simple word co-occurrences, represents
the simplest semantic space, called Term-Term co-occurrence Matrix (TTM).

An example term◊ term matrix M is shown in Figure 3.3. The corpus from
which it is obtained are the same four sentences of Figure 3.2: “drink a glass of
wine”, “wine is made of grapes”, “drink a glass of beer” and “beer is made of
hops”.

In the literature, several methods to approximate the original matrix by rank
reduction have been proposed. The aim of these methods varies from discovering
high-order relations between entries to improving e�ciency by reducing its noise
and dimensionality. We exploit three methods for building our semantic spaces:
Latent Semantic Analysis (LSA), Random Indexing (RI) and LSA over RI.

All these methods produce a new matrix M̂, which is a n ◊ k approximation
of the co-occurrence matrix M with n row vectors corresponding to vocabulary
terms, while k is the number of reduced dimensions.

3.1.2 Latent Semantic Analysis
Latent Semantic Analysis [Deerwester et al., 1990] is based on the Singular
Value Decomposition (SVD) of the original matrix M. M is decomposed in the
product of three matrices U�V€, where U and V are orthonormal matrices

1
The corpus could be the collection of documents indexed by the QA system, but also

some external text collection.

Semantics 24

0 2drink

a

dr
ink gla
ss

a of wi
ne

be
er

ma
de

is gra
pe
s

ho
ps

2 2 1 1 0 0 0 0

2 0 2 2 1 1 0 0 0 0

1 1wine

beer

1 2 0 0 1 1 1 0

1 1 1 2 0 0 1 1 0 1

glass 2 2 0 2 1 1 0 0 0 0

of 2 2 2 0 2 2 2 2 1 1

is 0 0 0 2 1 1 0 2 1 1

made 0 0 0 2 1 1 2 0 1 1

grapes 0 0 0 1 1 0 1 1 0 0

hops 0 0 0 1 0 1 1 1 0 0

Figure 3.3: An example of term ◊ term matrix M

whose columns are the right and left eigenvectors of the matrices M€M and
MM€ respectively, while � is the diagonal matrix of the singular values of M
placed in decreasing order.

SVD can be applied to any rectangular matrix, and if r is the rank of M,
then the matrix ÊM = Uk�kV€

k of rank k π r, built choosing the top k singular
values, is the best rank k approximation of M. The approximated ÊM s shown
in Figure 3.4.

SVD helps both to discover high-order relations between terms and to re-
duce the sparsity of the original matrix. Moreover, since the matrix MM€

corresponds to all possible combinations of any two terms, it is possible to com-
pute the similarity between two terms by exploiting the relation

MM€ = U�V€V�€U€ = U��€U€ = (U�)(U�)€

In the case of the k-approximation of M, the complexity of the computation of
the similarity between any two terms is reduced.

3.1.3 Random Indexing
We exploit Random Indexing (RI), introduced by Kanerva [1988], for creating
the DSM based on RI. This technique allows us to build a semantic space with
no need for matrix factorization, because vectors are inferred using an incre-
mental strategy. Moreover, it allows to solve e�ciently the problem of reducing

Semantics 25

M U Σ
V⊤

m x n m x m m x n

n x n
=

σi

M Uk

Vk

m x n m x k

k x k k x n=~

⊤Σk

Figure 3.4: A depiction of SVD matrices

dimensions, which is one of the key features used to uncover the “latent semantic
dimensions” of a word distribution.

RI is based on the concept of Random Projection according to which ran-
domly chosen high dimensional vectors are “nearly orthogonal” (they are not
formally orthogonal, but in practice their inner product results to be 0 or re-
ally close to 0). This yields a result that is comparable to orthogonalization
methods, such as SVD [Landauer and Dumais, 1997], but saving computational
resources.

Formally, given an n ◊ m matrix M and an m ◊ k matrix R made up of m

k-dimensional random vectors, we define a new n ◊ k matrix MÕ as follows:

MÕ
n,k = Mn,mRm,k k << m (3.1)

The new matrix MÕ has the property to preserve the distance between points.
This property is known as Johnson-Lindenstrauss lemma [Johnson and Linden-
strauss, 1984]: if the distance between any two points of M is d, then the
distance dr between the corresponding points in MÕ will satisfy the property
that dr = c · d. A proof of that property is reported in [Dasgupta and Gupta,
1999].

The product between M and R is not actually computed, but it corresponds
to building MÕ incrementally, as follows:

1. Given a corpus, a random vector is assigned to each term. The random
vector is high-dimensional, sparse and with very few elements with non-

Semantics 26

zero values {≠1, 1}, which ensures that the resulting vectors are nearly
orthogonal, and the structure of this vector follows the hypothesis behind
the concept of Random Projection.

2. The semantic vector of a term is given by summing the random vectors
of terms co-occurring with the target term in a predetermined context
(document / sentence / window).

Having {≠1, 1} as the only possible values halves the probability of gen-
erating random vectors with 1 in the same position, which will result in non
orthogonal vectors.

An example of the construction of the term vectors is shown in Figure 3.5

1 0I 0 0 0 -1 0

drink 0 0 1 0 0 0 0

I drink beer
You drink a glass of beer

Dataset

Context Vectors

beer 0 1 0 0 0 0 0

you 0 -1 0 0 0 0 1

glass -1 0 0 0 1 0 0

tvbeer = 1cvi + 2cvdrink + 1cvyou + 1cvglass

Term Vectors

beer 0 -1 2 0 1 -1 1

Figure 3.5: Term Vector construction in Random Indexing

3.1.4 Latent Semantic Analysis over Random Indexing
Computing LSA on the co-occurrence matrix M can be a computationally ex-
pensive task, as the vocabulary V can reach thousands of terms. Here we pro-
pose a simpler computation based on the application of the SVD factorization to

Semantics 27

wt

wt-r

…

wt-1

wt+1

…

wt+r

INPUT PROJECTION OUTPUT

Figure 3.6: The architecture of the Continuous Skip-gram Model

MÕ, the reduced approximation of M produced by Random Indexing. Sellberg
and Jönsson [2008] followed a similar approach for the retrieval of similar FAQs
in a QA system. Their experiments showed that reducing the original matrix
by RI resulted in a drastic reduction of LSA computation time. The trade-o�
to be paid was the slight worse performance, which were better than TTM and
RI anyway.

3.1.5 Continuous Skip-gram Model
A quite di�erent DSMs aims at learning distributed representations of words
with neural networks, because they have better performances than LSA in pre-
serving linear regularities among words [Mikolov et al., 2013a] and the latest
models are computationally less expensive, so they scale better on large data
sets.

In [Mikolov et al., 2013b], the authors construct a really scalable log-linear
classification network, using a simpler architecture than previous work, where
neural networks are usually constructed with several non-linear hidden layers
[Bengio et al., 2003]. Two such simpler networks are proposed in that work:
the Continuous Bag-of-Words Model and Continuous Skip-gram Model. While
both are shown to be e�ective in semantic-syntactic word relationship learning
and sentence completion tasks, the former is faster to train, while the latter has

Semantics 28

better performances at the cost of slightly longer training time. Although both
are really scalable, for our experiments we decided to adopt the latter one for
its accuracy.

The Continuous Skip-gram Model builds on Feedforward Neural Networks
described in [Bengio et al., 2003], but it consists only of input, projection and
output layers, so removing the hidden layer. As most of the complexity is
caused by the non-linear hidden layer, this improves the learning e�ciency at
the expenses of a representation that might be less precise, but enables to learn
models with bigger amounts of data. The model, shown in Figure 3.6, iterates
over the words in the dataset and uses each word wt as an input to a log-linear
classifier with continuous projection layer. What it outputs is a prediction of
the words within a certain range before and after the input word.

As the words that are more distant from the input word are less related to it,
the model adopts a randomization policy: if c is the fixed range before and after
a word, a value r is obtained picking randomly a value between [1, c]. Then
r words before the current and r words after the current are used as correct
labels, from wt≠r to wt≠1

and from wt+1

to wt+r.
At the end of the training phase, the weights associated with the projection

layer are used as vector representations for each word. The resulting encoding
captures meaningful word representations, where words of similar meaning have
nearby representations.

3.2 Distributional Semantic Models Integration
in Question Answering

The idea behind the application of DSMs in a QA framework is to build new fea-
tures relying on semantic spaces, and add them to the feature extractor pipeline
described in Section 2.3.3. We call this component Distributional Feature Ex-
tractor and it aims at computing the semantic similarity between the question
and each candidate answer.

We use word vector representations for building sentence level vector rep-
resentation by summing the vectors of the words that appear in the sentence.
This way we obtain vector representations for questions and answers and we can
compute their cosine similarity to obtain a semantic similarity measure. This
measure becomes one feature used in the ranking of the answers. Questions
and answers are usually short pieces of text and this makes this strategy more
suitable.

In DSMs, given the vector representation of two words u = (u
1

, . . . , un)€

and v = (v
1

, . . . , vn)€, it is always possible to compute their similarity as the
cosine of the angle between them:

Semantics 29

cos(u, v) =
qn

i=1

uiviqn
i=1

u2

i

qn
i=1

v2

i

(3.2)

However, the user’s question and the candidate answer are sentences com-
posed by several terms, so in order to compute the similarity between them we
need a method to compose the words occurring in these sentences. It is pos-
sible to combine words through vector addition (+). This operator is similar
to the superposition defined in connectionist systems [Smolensky, 1990], and
corresponds to the point-wise sum of components:

s = u + v (3.3)

where si = ui + vi.
Addition is a commutative operator, which means that it does not take into

account any order or underlying structures existing between words in both ques-
tions and answers. We do not exploit more complex methods to combine word
vectors as they do not clearly outperform the simple vector addition [Mitchell
and Lapata, 2010].

Given a phrase or sentence s, we denote with s its vector representation
obtained applying addition operator (+) to the vector representation of terms
it is composed of. Furthermore, it is possible to compute the similarity between
two phrases / sentences exploiting the cosine similarity between vectors (3.2).

Formally, if q = q
1

, q
2

, . . . , qn and a = a
1

, a
2

, . . . , am are the question and
the candidate answer respectively and each qi and ai is a term present in them,
we build two vectors q and a which represent respectively the question and the
candidate answer in a semantic space. Vector representations for question and
answer are built applying the addition operator to the vector representation of
words belonging to them:

q = q
1

+ q
2

+ . . . + qn

a = a
1

+ a
2

+ . . . + am

(3.4)

The similarity between q and a is computed as the cosine similarity between
them.

For example, we want to compare the question q “Is Guinness a kind of
beer?” with the passage a1 “Guinness produces di�erent kinds of stouts” and
the passage a2 “Apple produces di�erent kinds of computers”. The vector rep-
resentations of the (non-stopword) words are:

v
is

= [0.1, 0.2, 0.3, 0.25]

v
guinness

= [0.7, 0.1, 0.12, 0.09]

v
kind

= [0.2, 0.1, 0.65, 0.5]

Semantics 30

v
beer

= [0.8, 0.05, 0.1, 0.12]

v
produces

= [0.3, 0.4, 0.1, 0.04]

v
di�erent

= [0.1, 0.21, 0.1, 0.12]

v
kinds

= [0.22, 0.08, 0.67, 0.48]

v
stouts

= [0.82, 0.04, 0.11, 0.11]

v
apple

= [0.44, 0.71, 0.24, 0.14]

v
computers

= [0.05, 0.84, 0.2, 0.6]

It is easy to see how the vectors for beer and stout and the vectors for kind
and kinds are really similar to each other (i.e. close in the semantic space).

The representation for q, a1 and a2 are the following:

q = v
is

+ v
guinness

+ v
kind

+ v
beer

= [1.8, 0.45, 1.17, 0.96]

a1 = v
guinness

+ v
produces

+ v
di�erent

+ v
kinds

+ v
stouts

= [2.14, 0.83, 1.1, 0.84]

a2 = v
apple

+ v
produces

+ v
di�erent

+ v
kinds

+ v
computers

= [1.11, 2.24, 1.31, 1.38]

The cosine similarity among the q and the two passages a1 and a2 is:

cos(q, a1) = 0.9846

cos(q, a2) = 0.7794

So a1 would be ranked higher than a2 in a rank list.
A graphical depiction of word vectors v and their composition in question

vector q and answer vector a and the angle ◊qa among them is shown in Fig-
ure 3.7

The value of the cosine similarity is calculated by the Distributional Feature
Extractor and used as a feature for ranking. Changing the DSM from which
we take the vector representations of the words and changing the corpora em-
ployed to learn those representations, we can compute several features. In the
description of the experiments in Chapter 5 and Chapter 6 we will describe the
exact models and corpora adopted in each case.

Semantics 31

v1

v2

v3

q

a

Θqa

q=v1+v2
a=v2+v3

Figure 3.7: Semantic similarity among question vector q and answer vector a

4

Learning to Rank

“We can say that Muad’Dib learned rapidly because his first training
was in how to learn. And the first lesson of all was the basic trust that
he could learn.”

– Frank Herbert, Dune

“If history repeats itself, and the unexpected always happens, how
incapable must Man be of learning from experience.”

– George Bernard Shaw

In this chapter we describe the Learning to Rank setting we adopt for com-
bining di�erent ranking criteria, giving an overview of the main approaches and
describing the algorithm we adopt.

4.1 Machine Learning for Ranking
Learning to Rank refers to machine learning techniques for training the model
in a ranking task. Ranking is at the core of information retrieval: given a
query, candidates documents have to be ranked according to their relevance to
the query. Learning to Rank is a relatively new field in which machine learning
algorithms are used to learn this ranking function. It is of particular importance
for web search engines to accurately tune their ranking functions as it directly
a�ects the search experience of millions of users. A typical setting in Learning to
Rank is that feature vectors describing a query-document pair are constructed
and relevance judgments of the documents to the query are available. A ranking
function is learned based on this training data, and then applied to the test data.

Learning to Rank can be employed in a wide variety of applications in In-
formation Retrieval, Natural Language Processing, and Data Mining. Typical
applications are document retrieval, expert search, definition search, collabo-
rative filtering, keyphrase extraction, document summarization, and machine

32

Learning to Rank 33

translation [Li, 2011]. It has been used also for Question Answering [Agarwal
et al., 2012]. Intensive studies have been conducted on the problem and signifi-
cant progress has been made [Liu, 2011] and several machine learning algorithms
have been applied to it [Liu, 2009, Freund et al., 2003, Burges et al., 2005, Cao
et al., 2006, Xu and Li, 2007, Cao et al., 2007, Cossock and Zhang, 2008, Burges
et al., 2011].

…⋮ ⋮

…

…

…

q1 qn

d11 d11

d1m1
dnmn

⋮

q

d1

dm

Feature Extraction

⋮

x1

xm

⋮ ⋮

x11 y11

x1m1
y1m1

⋮ ⋮

xnmn
ynmn

Learning h
Ranking Model

⋮ ⋮

x1 ŷ1

xm ŷm

Training Test

Figure 4.1: Learning to Rank setting

In the Learning to Rank setting (see Figure 4.1), query-document pairs (q, d)
are labeled with relevance judgments that indicate the degree of relevance of

Learning to Rank 34

the document d with respect to query q. For example, each relevance judgment
can be one element in the ordinal set, perfect, excellent, good, fair, bad and
is labeled by human editors. The label can also simply be binary: relevant
or irrelevant. Each query and each of its documents are paired together, and
each query-document pair is represented by a feature vector. The features are
usually an indication of the degree of similarity between q and d, but also
information about q and d in isolation, such as their length or the PageRank of
web documents.

Each pair is treated as a single datapoint and a set of datapoints can be used
for training purposes, in order to learn a function to predict the best ranking of
di�erent documents according to a query.

Thus the training data can be formally represented as: (xq
j , yq

j), where q

goes from 1 to n, the number of queries, j goes from 1 to mq , the number of
documents for query q, xq

j œ Rd is the d-dimensional feature vector for the pair
of query q and the j-th document for this query and yq

j is the relevance label
for xq

j .
This training data is used for training a model h that is used to output a

ranking score ŷ for all the feature vectors x obtained from the (q, d) pairs in the
test data.

In our experiments the queries are the questions and the documents are the
candidate answers.

4.2 Approaches
Several algorithm have been proposed for this goal in the literature [Liu, 2009].
They can be categorized, with few exceptions like query dependent ranking
[Geng et al., 2008] and multiple nested ranking [Matveeva et al., 2006], in three
major families: Pointwise approach, Pairwise approach and Listwise approach.

The pointwise and pairwise approaches directly cast the problem of learning
a ranking function to a classification, regression, or ordinal classification prob-
lem. On the other hand, listwise approaches use document ranking lists directly
as instances for learning learning and learn a ranking model based on the whole
lists. The main di�erences among the approaches is the loss functions they try
to optimize.

4.2.1 Pointwise
In the pointwise approach, the group structure of ranking is ignored and the
setting becomes typical supervised learning, with data representing a mapping
from x to y. If y is a class label, real number or grade label, then the problem
becomes classification, regression, and ordinal classification, respectively and it
is possible to use existing methods to perform the learning task.

Learning to Rank 35

Given a query, these models output a value that can be directly used to rank
documents, sorting them according to the scores given in output by the model.
The loss function in learning is pointwise as it is defined on a single feature
vector of the query-document pair.

Some pointwise algorithms are Prank [Crammer and Singer, 2001], OC SVM
[Shashua and Levin, 2002], McRank [Li et al., 2007], and Subset Ranking [Cos-
sock and Zhang, 2006].

4.2.2 Pairwise
In the pairwise approach, the group structure of ranking is ignored like in the
pointwise approach, but the setting is casted to pairwise classification or pairwise
regression. In those tasks the classifiers are used to order document pairs with
respect to a query, and the same learned function can be used to full document
ranklist ordering.

In the pairwise approach, data is taken in pairs of examples with di�erent
labels from the ranklist of the same query. From the dataset (xq

j , yq
j), if yq

i > yq
k,

meaning yq
i has an higher grade than yq

k, then (xq
i , xq

k) becomes a preference pair
where the first element is the vector is the one with higher grade label y with
respect to the second element. The pairs are used as instances in the pairwise
classification or regression problem.

Like in pointwise approaches, given a query, these models output a value
that is assigned to each document and can be directly used to rank them. An
e�ective model for pairwise classification or regression is also an e�ective model
for ranking. The loss function in learning is pairwise as it is defined on a pair
of feature vectors obtained from two query-document pairs.

Some of the most widely adopted pairwise algorithms are RankSVM [Joachims,
2002], RankBoost [Freund et al., 2003], RankNet [Burges et al., 2005], Lamb-
daRank [Burges et al., 2006] and LambdaMART [Wu et al., 2010].

4.2.3 Listwise
The ranking problem, by definition, deals with a set of documents to be ranked
against a query, and listwise approaches addresses the problem in a more direct
way, using entire ranking lists as instances in both learning and prediction,
exploiting the group structure of the ranklist. As most evaluation measures are
computed on full ranklists, listwise models can try to optimize for them more
directly, incorporating them in the loss functions.

In the listwise approach, data is taken as full ranklists of documents for
the same query. From the dataset (xq

j , yq
j), for each query qi, all the vectors

xqi
j with the labels yqi

j associated with the query are taken together as one
instance. The model learns a ranking model that assigns a score to feature

Learning to Rank 36

vectors obtained from query-document pairs that can be used for ranking them.
Di�erently from pointwise and pairwise approaches, this is a new problem and
classic machine learning algorithms cannot be directly applied, even if the basic
guiding principles in the newly developed listwise Learning to Rank algorithms
can be mapped back to them.

The listwise approach includes ListNet [Cao et al., 2007], AdaRank [Xu and
Li, 2007], SoftRank [Taylor et al., 2008], and AppRank [Qin et al., 2010].

4.3 Evaluation Metrics
The most used metrics for evaluating a Learning-to-Rank algorithm are Mean
Reciprocal Rank, used when the relevance levels are binary, and Normalized
Discounted Cumulative Gain. We will use these metrics in our experiments,
alongside with other metrics specifically tailored for the experimental setting.

4.3.1 Mean Reciprocal Rank
The Reciprocal Rank of a query response is the multiplicative inverse of the rank
of the first correct answer. It varies from 0 to 1, with a score of 1 meaning that
the first document is the correct answer and 0 meaning that no correct answer
was found in the retrieved document list. The Mean Reciprocal Rank (MRR) is
the average of the reciprocal ranks of results for a set of queries Q, calculated
as follows:

MRR = 1
|Q|

|Q|ÿ

i=1

1
ranki

where |Q| is the number of queries and ranki is the rank of the first correct
answer.

4.3.2 Normalized Discounted Cumulative Gain
The Normalized Discounted Cumulative Gain (NDCG) measures the perfor-
mance of a ranking algorithm based on the graded relevance of the documents.
It varies from 0 to 1, with 1 representing the ideal ranking of the entities. This
metric is commonly used in Information Retrieval and to evaluate the perfor-
mance of web search engines.

The premise of the Discounted Cumulative Gain is that highly relevant doc-
uments appearing lower in a search result list should be penalized as the graded
relevance value is reduced logarithmically proportional to the position of the
result. It is defined as follows:

DCG
k

=
kÿ

i=1

2relk ≠ 1
log

2

(i + 1)

Learning to Rank 37

where k is a specified position in the ranking and relk is an indicator function
of relevance that returns 1 if the answer in the kth position in the ranking is the
best answer. Calculating IDCGk as the maximum possible (ideal) DCG for a
given set of queries, documents and relevances, the DCG can be normalized to
map the possible scores to 0 to 1 range, obtaining the nDCG:

nDCGk = DCGk

IDCGk

4.4 Random Forests
We wanted to adopt a Learning to Rank algorithm to combine all the features
available for extraction (see Section 2.3.3 and Section 6.3) with the features
based on DSMs presented in Chapter 3 and with several other features that
depend on the specific experiments (see Section 6.3).

We opted for Random Forests (RF) [Breiman, 2001] because of their re-
silience to overfitting, a problem that may a�ect our experimental setting due
to the size of our dataset, and because of the successful results in several use
cases related to Community-based Question Answering [Dalip et al., 2013] and
in other large scale retrieval experiments [Mohan et al., 2011] where, in general,
decision trees were the most popular class of models among the top competitors
and ensemble methods, including boosting, bagging and RF, were dominant
techniques.

Furthermore, in our QA settings, the relevance judgments are always bi-
nary, and the distribution of positive and negative examples is skewed towards
the negative examples, with usually only one positive example for each query.
This is likely to make more complex approaches like listwise ones (that usually
achieve better performances in IR benchmarks) less useful because most of the
items in the ranking will have the same relevance judgment and their order-
ing is not relevant. Our experiments confirmed empirically this intuition (see
Section 6.6.5).

Let xj = „(q, d), where „ is a feature extractor, and xj is a m-dimensional
vector. Let D = (x1, y1), . . . , (xn, yn) be a set of feature vectors extracted from
query-document pairs xi œ Rd and their associated relevance ratings yi œ Y .

The RF algorithm trains a model H such that H(xj) ¥ yj and so that the
ranking of all the documents d appearing in pair with a query q according to
H(xj) is as similar as possible to the ranking according to yj .

The algorithm is shown in Algorithm 1.
The main idea of RF is to apply a decision tree regression algorithm to

M subsets of D and then average the results. A sample Dt is extracted with
replacement from D (step 2). A set K of features is randomly picked from the
feature set, so that |K| Æ m (step 3). Learning a tree, if one or a few features are
very strong predictors for the response variable (target output), these features

Learning to Rank 38

Algorithm 1 Random Forests
Require: D = (x1, y1), . . . , (xn, yn), r > 0

1: for i Ω 1 to r do
2: Dt Ω sample(D)
3: K Ω randomPick(m)
4: hi Ω buildDecisionTree(Dt, K)
5: end for
6: H() Ω 1

r

qr
i=1

hi()
7: return H()

will be selected in many of the r trees, causing them to become correlated. To
contrast this, for a dataset with m features,

Ô
m features are used in each split.

A decision tree (CART) is induced from Dt using the features in K (step 4).
The whole process is repeated r times and the outputs of all the single trees are
averaged to obtain the function H (step 6). The use of di�erent samples of the
data from the same distribution and of di�erent sets of features for learning the
individual decision trees prevent overfitting.

In our experimental evaluation we adopted the implementation provided by
the RankLib library1 with the default parameters.

1
http://sourceforge.net/p/lemur/wiki/RankLib/

Part II

Experiments

39

5

Passage Retrieval
Experiments

“It is not that I’m so smart. But I stay with the questions much longer.”
– Albert Einstein

“There are no answers, only cross references.”
– Norbert Wiener, Wiener’s Law of Libraries,

In this chapter we describe a preliminary experiment carried out on the
ResPubliQA 2010 Dataset. The aim is to test the e�ectiveness of our proposed
method of integration of DSMs in a QA system.

With this experiment we aim at answering the first research questions, RQ1:

• RQ1. Is the Distributional Semantics representation a good representation
for the meaning of questions and answers?
We address this question evaluating the e�ectiveness of the ranking of
answers obtained with the Distributional Semantics representations.

5.1 Experiment Description
The goal of the evaluation is twofold: (1) assess the e�ectiveness of DSMs into
our QA system and (2) provide a comparison between the several DSMs adopted
by the Distributional Feature Extractor.

The task we choose to perform in order to answer the goals is passage re-
trieval: given a set of natural language questions q, the goal is to find the passage
of text that contains the correct answer in a specific collection of documents (al-
ready split in paragraphs). There could be more than one passage of text that
contains the correct answer and there is no candidate passage to each question,

40

Passage Retrieval Experiments 41

all passages from all documents in the collection could potentially contain the
correct answer.

In order to test the e�ectiveness of the DSMs for QA, we rely on the QA
framework presented in Chapter 2.

In particular, we adopted four types of semantic spaces: a classical Term-
Term co-occurrence Matrix (TTM) used as baseline, Latent Semantic Analysis
(LSA) applied to TTM, Random Indexing (RI) approach to reduce TTM di-
mensions, and finally the LSA over RI (LSARI). All the DSMs are constructed
on the corpus of documents used for the evaluation. The Distributional Feature
Extractor will assign a score based on the similarity between the question and
the candidate answers inside the DSMs.

5.2 Dataset
The evaluation has been performed on the ResPubliQA 2010 Dataset adopted
in the 2010 CLEF QA Competition [Peñas et al., 2010]. Two sets of docu-
ments have been included in ResPubliQA 2010 collection: a subset of the JRC-
ACQUIS Multilingual Parallel Corpus and a small portion of the EUROPARL
collection. Both are multilingual parallel collections.

JRC-ACQUIS is a freely available parallel corpus containing the total body
of European Union documents, mostly of legal nature. It comprises contents,
principles and political objectives of the European Union treaties, the Euro-
pean Union legislation, declarations and resolutions, international agreements
and acts. Texts cover various subject domains, including economy, health, in-
formation technology, law, agriculture, food, politics and more. This collection
of legislative documents currently includes selected texts, written between 1950
and 2006, with parallel translations in 22 languages. The corpus is encoded in
XML, according to the TEI guidelines.

The subset used in ResPubliQA consists of 10,700 parallel and aligned doc-
uments per language (Bulgarian, English, French, German, Italian, Portuguese,
Romanian and Spanish). The documents are grouped by language, and inside
each language directory, documents are grouped by year. All documents have a
numerical identifier called the CELEX code, which helps to find the same text
in the various languages. Each document contains a header (giving for instance
the download URL and the EUROVOC codes) and a text (which consists of a
title and a series of paragraphs).

EUROPARL is a collection of the Proceedings of the European Parliament
dating back to 1996. European legislation is a topic of great relevance to many
potential users from citizens to lawyers, government agencies, politicians and
many others. EUROPARL comprises texts in each of the 11 o�cial languages
of the European Union (Danish, German, Greek, English, Spanish, Finnish,

Passage Retrieval Experiments 42

French, Italian, Dutch, Portuguese and Swedish). With the enlargement of the
European Union to 25 member countries in May 2004, the European Union has
begun to translate texts into even more languages. However, translations into
Bulgarian and Romanian start from January 2009 and for this reason we only
compiled documents from the European Parliament site1 starting from that
date. In this way, we ensured a parallel collection for 9 languages (Bulgarian,
Dutch, English, French, German, Italian, Portuguese, Romanian and Spanish).

For our experiments we adopted only the English and Italian parts of the
dataset. The questions to answer are 200 and the relevance of the passages of
text with respect to the question has been manually assessed, with only one
correct passage for each question is present in the gold standard.

Moreover, the results submitted by the participants in the competition have
been manually evaluated and few more passages have been added to the gold
standard. This resulted in a slightly expanded gold standard, with an average
of 2.2 correct answers for each question and each system in the competition
received on average a 11% improvement from the expanded gold standard. Fur-
thermore, it is not possible to directly compare with the results of the compe-
tition, as some answers provided by our system could be correct, but there is
no human assessor that can confirm that. The dataset and the extended gold
standard are anyway a useful tool and we provide our own baselines to compare
against.

5.3 Analysis of the 2010 CLEF QA Competition
Participants

The groups participating in the 2010 CLEF QA Competition were 13. An anal-
ysis of the most e�ective systems shows some important features of the systems:
Toba et al. [2010] used lemmas for indexing the passages while Nemeskey [2010]
and Sabnani and Majumder [2010] used stems and terms. Few other systems
indexed n-grams and chunks, only one indexed word senses. All three systems
performed a question classification step, relying mostly on manual patterns,
while Nemeskey [2010] also adopted lemmatization and PoS tagging for this
subtask. The retrieval was usually carried out using the BM25 model, which
was used also as a baseline for the passage retrieval task.

Di�erent ranking and validation techniques were applied by participants,
the most common processing was to measure the lexical overlapping among
questions and candidate answers (it was performed by 5 participants). On the
other hand, more complex techniques such as syntactic similarity or theorem
proving were applied by very few participants. Few others adopted redundancy

1
http://www.europarl.europa.eu/

Passage Retrieval Experiments 43

based measures and only one relied on a learned combination of criteria.
For those systems performing also answer selection, the most common pro-

cessing was the use of named entities, numeric and temporal expressions, while
some systems relied on syntactic processing by means of chunking, dependency
parsing or syntactic transformations. Only one relied on a logic representation
with a theorem prover.

5.4 Experimental Setup
The metric adopted in the experiment is the accuracy A@n, calculated consid-
ering only the first n answers. If the correct answer occurs in the top n retrieved
answers, the question is marked as correctly answered. In particular, we take
into account several values of n =1, 5, 10 and 30. This metric is sometimes also
referred to as CORRECT@n and usually is only taken into account with n =1,
making A@1 equal to Precision@1. We use this metric with di�erent values
for n as we would want to analyze the performance of our system considering
acceptable for a potential user to find the correct answer not only first in the
rank, but also in the first n positions. Moreover, we adopt another metric, the
MRR, that considers the rank of the first correct answer. We already described
this metric in Section 4.3.1. In this metric the score is higher if the first correct
passage occurs on higher in the ranking. Again, we use this metric because we
want to assess the performance of the system in returning the correct answer
as high as possible in the raning. Both measures are widely used in IR and QA
literature [Moldovan et al., 2003, Forner et al., 2010].

The di�erent DSMs and the classic TTM have been used in two ways:

• as feature extractor alone, which means no other feature extractors are
adopted in the pipeline and the only score used for ranking is the one
coming from the Distributional Feature Extractor,

• combined with some other linguistic similarity features: term overlap
(TO), lemma+pos overlap (LO), lemma+pos density (LD) and the ex-
act sequence (E). As the number of questions is rather small (only 200)
we preferred not to learn a ranking model and to rely on the CombSum
aggregation strategy that we described in Section 2.3.4.

Moreover, we need to setup some parameters of DSMs. The window w of
terms considered for computing the co-occurrence matrix is 4, while the number
of reduced dimensions considered in LSA, RI and LSARI is equal to 1,000.

The performance of the combination of the linguistic similarity features,
without the distributional ones, is shown as a baseline. The experiments have
been carried out both for English and Italian, results are shown respectively in
Table 5.1 and 5.2. Each Table reports the accuracy A@n computed considering

Passage Retrieval Experiments 44

Table 5.1: Evaluation Results on ResPubliQA 2010 Dataset for English.

Features A@1 A@5 A@10 A@30 MRR

alone

TTM 0.060 0.145 0.215 0.345 0.107
RI 0.180 0.370 0.425 0.535 0.267‡

LSA 0.205 0.415 0.490 0.600 0.300‡

LSARI 0.190 0.405 0.490 0.620 0.295‡

combined

baseline 0.445 0.635 0.690 0.780 0.549
TTM 0.535 0.715 0.775 0.810 0.614†

RI 0.550 0.730 0.785 0.870 0.637†‡

LSA 0.560 0.725 0.790 0.855 0.637†

LSARI 0.555 0.730 0.790 0.870 0.634†

Features for combined evaluation: TO+LO+LD+E. Significance of the di�er-
ence with p < 0.05 with respect to the baseline (†) and with TTM (‡) are
shown.

a di�erent number of answers, the MRR and the significance of the results with
respect to both the baseline (†) and the distributional model based on TTM (‡).
The significance is computed using the non-parametric Randomization test, as
suggested in [Smucker et al., 2007], since it has proven to be an e�ective test
under several circumstances. For the Randomization test a Perl script supplied
by the authors2 has been employed.

5.5 Experimental Results
Considering each distributional feature on its own, the results show that all the
proposed DSMs perform better than the TTM, and the improvement is always
significant. The best improvement in English is obtained by LSA (+180%),
while in Italian by LSARI (+161%).

Taking into account the distributional features combined with the linguistic
similarity ones, the results show that all the combinations are able to overcome
the baseline. In English we obtain an improvement, about 16% with respect to
the baseline. For the Italian language, we achieve a higher improvement. The
best result is obtained by LSARI with an improvement of 26% with respect to
the baseline.

The slight di�erence in performance between LSA and LSARI suggests that
LSA applied to the matrix obtained by RI can produce the same results of
the LSA applied to TTM, but requiring less computation time, as the matrix
obtained by RI contains less dimensions than the original TTM matrix.

2
http://www.mansci.uwaterloo.ca/≥msmucker/software/paired-randomization-test-v2.pl

Passage Retrieval Experiments 45

Table 5.2: Evaluation Results on ResPubliQA 2010 Dataset for Italian.

Features A@1 A@5 A@10 A@30 MRR

alone

TTM 0.060 0.140 0.175 0.280 0.097
RI 0.175 0.305 0.385 0.465 0.241‡

LSA 0.155 0.315 0.390 0.480 0.229‡

LSARI 0.180 0.335 0.400 0.500 0.254‡

combined

baseline 0.365 0.530 0.630 0.715 0.441
TTM 0.405 0.565 0.645 0.740 0.539†

RI 0.465 0.645 0.720 0.785 0.555†

LSA 0.470 0.645 0.690 0.785 0.551†

LSARI 0.480 0.635 0.690 0.785 0.557†‡

Features for combined evaluation: TO+LO+LD+E. Significance of the di�er-
ence with p < 0.05 with respect to the baseline (†) and with TTM (‡) are
shown.

In general, the results are encouraging and suggest the e�ectiveness of using
DSMs in our QA framework. Moreover, the proposed semantic spaces are able
to outperform the classical TTM in our evaluation.

Finally, the improvement obtained considering each distributional feature on
its own shows an higher increment than their combinations with the linguistic
similarity features. This suggests that a more complex method to combine
features should be used in order to strengthen the contribution of each of them.
To this purpose, we investigated some learned models for Learning to Rank in
the following experiments in Chapter 6.

The results show the e�ectiveness of the proposed approach, answering RQ1,
and highlight that more sophisticated techniques such as LSA and RI are able
to outperform the simple term-term matrix used as baseline.

6

Experiments with
Community Question
Answering

“To exhibit the perfect uselessness of knowing the answer to the wrong
question.”

– Ursula K. Le Guin, The Domestication of Hunch

In this chapter we describe an extended experiment carried out on two large-
scale real-world datasets extracted from Yahoo! Answers. The experimental
task is best answer prediction, slightly di�erent from the passage retrieval one
of the experiment in Chapter 5, having already candidate answers for each ques-
tion, but the ranking of the answers takes place in the same way. In this exper-
iment we adopt a wide range of features, including the distributional semantic
ones, and compare with strong state-of-the-art baselines. We furthermore pro-
vide background for Community Question Answering and Expert Finding, as
some features we adopt originated in those fields. We provide details about the
adopted features and discuss the results of the experiment.

With this experiment we aim at answering two research questions, RQ1 and
RQ2:

• RQ1. Is the Distributional Semantics representation a good representation
for the meaning of questions and answers?
We address this question evaluating the e�ectiveness of the ranking of
answers obtained with the Distributional Semantics representations.

• RQ2. Can distributional semantic representations be combined with other
criteria in order to obtain a better ranking of the answers?

46

Experiments with Community Question Answering 47

To answer this question, we propose to combine Distributional Semantics
with several other criteria for answer ranking in a machine learning setting.
We experimented on large-scale dataset the combination of criteria and
the contribution of each criterion family to the quality of the ranking.

6.1 Experiment Description
Community Question Answering (CQA) sites such as Yahoo! Answers, Stack-
Overflow, or Ask.com have been very popular since the beginning of the rise of
the Social Web due to their ability to leverage a collaborative paradigm to serve
articulate user queries that may not find satisfactory answer if submitted to
conventional search engines [Morris et al., 2010]. Even though the management
of the question-answering process in major online services is usually conducted
by human users with very little support from automated techniques, in the last
years much research has been done to provide automated methods to identify
topical experts, automatically routing to them questions relevant to their ex-
pertise and select the best answers among the ones provided (see Section 6.2 for
an extensive overview). In particular regarding the automatic best answer se-
lection, which is a fundamental task in this field, an impressive amount of work
has been conducted, but with a general lack of coherence in the experimental
approaches. It is indeed di�cult to establish how di�erent methods or feature
sets perform in relation to each others and in which cases.

In the general scenario of best answer prediction, there are some issues that
we contribute to address with this experiment. First, there is a general lack of
understanding of the relative predictive power of di�erent textual and linguistic
features that have been analyzed in isolation in several previous papers but have
never been directly compared in an extensive, systematic way. Also, the space
of linguistic features that are relevant to this task has still several unexplored
areas. Second, the interplay between textual approaches and expert-finding
methods based on the networks of user interaction have been mainly considered
independently and it is not clear how much the overall predictive potential can
benefit from their integration. Last, the performance of the majority of best
answer prediction methods in the literature has not been tested in relation to
di�erent question types or categories.

We contribute in this direction by considering a vast amount of lexical and
language features, including semantic role labeling, machine translation and
especially a novel class of Distributional-Semantics-based features. We combine
them with a set of network-based features for expert finding, that have always
been considered in isolation, in a learning to rank approach. Our results have a
two-fold implication. First, they allow us to shed light on the relative importance
of features that have not been systematically compared in the past. Last, they

Experiments with Community Question Answering 48

led us to produce a supervised model with a predictive accuracy that tops three
of the latest, yet already widely popular methods for best answer prediction.

More specifically, in this experiment we make the main following contribu-
tions.

• We propose, for the first time a combination of textual features with ex-
pertise network features in a learning to rank framework for the task of
best answer prediction.

• We consider 225 features in the CQA domain and we test them on the
largest dataset from Yahoo! Answers that has been ever used for this
task. Some of those feature groups have been already considered in the
literature but never compared directly to one another. The most e�ective
combination of features we use reaches up to 27% performance gain in
best answer prediction over recent state-of-the-art methods.

• We break down the results by question type, finding that Text Quality
features are more suited to predict the best answer to factual and subjec-
tive questions, whereas features from the user profile are more predictive
for discussion and poll-type questions.

• We introduce new Distributional-Semantics-based features. We verify that
the information they convey is not completely overlapping with other well-
established textual-based features, thus bringing a considerable additional
power to prediction models. We find that those features can replace more
costly and widely used textual similarity features without losing predictive
performance in the general case.

6.2 Background
In this section we discuss some background work in the field, describing studies
on Community Question Answering and Expert Finding, as well as some of the
features that are most widely adopted in previous approaches.

6.2.1 Community and non-Factoid Question Answering
Several approaches have been developed for finding and ranking answers in
CQA. A particular branch of research focused on Non-Factoid QA systems try-
ing to address the problem of finding answers to Why and How questions. They
often use CQA datasets for evaluations and adopt similar architectures to the
CQA answer ranking engines, although focusing more on linguistic features.

One of the earliest approaches to the problem adopted di�erent measures of
Text Quality to find the best answer for a given question [Agichtein et al., 2008].

Experiments with Community Question Answering 49

Intrinsic answer qualities such as grammatical, syntactic and semantic complex-
ity, punctuation and typo errors are adopted, along with question-answer sim-
ilarity and user expertise estimations. We build on that work by picking all
the features reported as most e�ective, expanding them with new categories of
features, and using a more robust learning algorithm.

The importance of linguistic features for Non-Factoid QA have been con-
firmed in several studies [Verberne et al., 2008, 2010, 2011], in which it is shown
how the adoption of semantic role labeling based features [Bilotti et al., 2010]
and deep and shallow syntactical structures [Severyn and Moschitti, 2012] can
improve the performance of a Non-Factoid QA system. We also adopt dis-
tributional linguistic features adding even more levels of lexicalization to the
linguistic representation.

Another set of approaches adopts machine translation models to learn how to
reformulate a question into an answer so that the probability of the translation
of question into the answer can be calculated and the candidate answers can
be ranked accordingly [Echihabi and Marcu, 2003, Riezler et al., 2007, Berger
et al., 2000]. Recently, Matrix Factorization algorithms have been adopted
for the same goal [Zhou et al., 2013]. We adopt machine translation features,
learning di�erent translation models for di�erent linguistic representations.

The study in the field dealing with the largest-scale dataset has been pro-
posed by Surdeanu et al. [2011]. They adopted a large amount of features,
bringing together linguistic features, those based on translation and classical
frequency and density ones. They tested their ranking model on a subset of
Yahoo! Answers showing the e�ectiveness of each feature subset. As illus-
trated in Section 6.4, we compare our method to theirs on the same dataset
(Yahoo! Answers Manner Questions), adding Distributional Semantics, Text
Quality, Expertise Network, and User-based features that were not previously
considered.

In more recent years, new approaches based on lexical semantics emerged.
Solutions leveraging Wikipedia entities [Zhou et al., 2013] have been also used,
showing potential in addressing the retrieval of synonyms and hypernyms. Re-
current Neural Network Language Models [Yih et al., 2013] have been studied
as well, confirming that lexical semantics is suitable to tackle the problem.

6.2.2 Expert Finding
A consistent branch of the studies on expert finding consists in casting the prob-
lem into an information retrieval problem, using methods to model the relevance
of candidate users to a given question or topic. In profile-based methods, can-
didates are described by a textual profile and profiles ranked with respect to an
expertise query [Liu et al., 2005, Craswell et al., 2001], while in document-based
approaches documents relevant to the query are retrieved first, and then can-

Experiments with Community Question Answering 50

didates are ranked based on the co-occurrence of topic and candidate mentions
in the retrieved documents [Balog et al., 2006, Serdyukov and Hiemstra, 2008].

Several slight variants to such approaches have been experimented during the
few past years, including topic-specific information retrieval approaches, where
users’ expertise is calculated only from the portion of their past history that
is relevant to the question [Li et al., 2011]. The use of topic modeling [Riahi
et al., 2012], as well as classification approaches Zhou et al. [2012] as opposed to
information retrieval have been explored as well. Most often, these approaches
rely on features of a single type or on quite sparse sets of features of multiple
types.

It is also worth mentioning that, in some cases, the task of expert finding has
been addressed from a slightly di�erent perspective that goes under the label
of “question recommendation”, that aims to recommend interesting questions
for a contributor that is willing to provide answers. Such approaches tend to
privilege the perspective of the answerer, for instance trying to assign questions
also to people who have never answered, to guarantee higher fairness of the
system Kabutoya et al. [2010]. One of the most complete pieces of work in
this direction Dror et al. [2011] uses a combination of collaborative filtering and
content-based approaches, showing that the content signal is the most powerful
to predict good user-question associations.

Alternative solutions to text-based methods mine the network of interactions
between users to infer which ones are the most “expert” with respect to a specific
question. This task, also known as expert finding, is not only limited to CQA
portals but it is generally directed to retrieving a ranked list of people who are
knowledgeable on a given topic.

This task can be addressed using techniques that are similar to the ones out-
lined above, such as information retrieval techniques, probabilistic frameworks
and topic models Liu et al. [2010]. However, graph-based models are particu-
larly suited to capture the expertise of individual contributors as they interact
with their peers.

In any social domain, the expertise may emerge from the complex interac-
tions of users, and can be modeled with the so-called Expertise Networks [Zhang
et al., 2007a,b], whose construction and structure is domain-dependent and can
potentially mix heterogeneous graphs [Smirnova and Balog, 2011, Bozzon et al.,
2013]. Examples of Expertise Networks include scientific collaboration networks
[Lappas et al., 2009], social networks [Zhang et al., 2007b,b, Bozzon et al., 2013],
communication networks [Dom et al., 2003, Fu et al., 2007], folksonomies [Noll
et al., 2009], and so on. Specifically, in CQA, as we will detail in Section 6.3.3,
the Expertise Networks have been modeled based on the asker-replier informa-
tion [Jurczyk and Agichtein, 2007], the assignment of the best answer [Bouguessa
et al., 2008, Gyongyi et al., 2007], and the competition between answerers [Liu

Experiments with Community Question Answering 51

et al., 2011, Aslay et al., 2013]. In CQA, once the experts in specific domains are
identified, algorithms of question routing can be used to deliver relevant ques-
tions to them, also taking into account their availability [Li and King, 2010,
Horowitz and Kamvar, 2010] and workload balance among the group of experts
[Chang and Pal, 2013].

Properties of Expertise Networks such as their shape, connectivity, and as-
sociativity patterns have been investigated in depth in previous work [Zhang
et al., 2007a, Smirnova and Balog, 2011, Jurczyk and Agichtein, 2007, Chen
et al., 2006]. In CQA specifically, studies on Expertise Networks include the
analysis of user behavior in terms of topical focus and discussion triggering [Gy-
ongyi et al., 2007], the characterization of the type of topics discussed [Adamic
et al., 2008], and the relation of tie strength with the e�ectiveness of the given
answers [Panovich et al., 2012].

However, previous literature in CQA has focused mostly on how network of
expertise could be leveraged to find the most expert users, as experts can likely
provide high-quality answers. The common assumption is that graph central-
ity on expertise network is correlated with expertise, and this has indeed been
shown extensively in the context of CQA [Jurczyk and Agichtein, 2007, Aslay
et al., 2013]. Standard centrality metrics, such as PageRank and HITS, as well
as custom scores like ExpertiseRank [Zhang et al., 2007b] are commonly used
for this purpose. Although in the past centrality metrics in CQA Expertise Net-
works have been found to be less e�ective in the task of best answer prediction
compared to simple baselines such as the personal best answer count or ratio or
best answer ratio [Bouguessa et al., 2008, Chen and Nayak, 2008], recent work
has shown that some combinations of expertise network and centrality metrics
can indeed beat also the best answer ratio, especially for some categories of
questions [Aslay et al., 2013].

In network-based frameworks, expertise can be interpreted as topic indepen-
dent, similarly to the notion of authority on a graph, but expertise in CQA is
more often topic-dependent. To address that, a possible solution is to narrow
down the focus on topic-induced subgraphs of the whole expertise network, as-
suming that all the users who participate in it are relevant to the topic [Aslay
et al., 2013, Campbell et al., 2003]. Alternatively, hybrid text-network ap-
proaches can be used, either with linear combinations of scores modeling subject
relevance and user expertise [Kao et al., 2010], or by recurring to topic modeling
to measure the relevance of the past users reply history to a specific topic, and
link analysis to estimate their authority within that topic [Zhu et al., 2011].
We tackle this problem by accounting topic relevance with textual features and
expertise with network features, combining them in a learning to rank fashion.

Last, we point out that, although we focus on centrality-based expert finding,
alternative network-oriented approaches have also been explored, such as label-

Experiments with Community Question Answering 52

propagation or random walk algorithms [Fu et al., 2007, Serdyukov et al., 2008]
or supervised approaches [Bian et al., 2009, Chen et al., 2012].

6.2.3 Comprehensive Approaches
Very few studies considered combinations of di�erent types of features. The
idea of using user interactions, network-based features and quality estimators
together for ranking the answers was introduced by Bian et al. [2008]. More
recently the same approach was re-proposed, with more features and a more
robust learning to rank algorithm, over StackOverflow data [Dalip et al., 2013],
focusing on features specifically designed for that dataset, like code blocks anal-
ysis. Our approach follows the path of mixing features coming from di�erent
fields and adopts the same learning to rank algorithm, but at the same time we
introduce several new features, including deeper linguistic ones and expertise
based, dropping the ones that are too dataset-specific to preserve generality
and we evaluate our approach on a larger scale dataset.

6.3 Adopted Features
Next, we describe the five main families of features that can be extracted from
most of CQA sites.

6.3.1 Textual Features
The textual features rely on the assumption that the similarity between the
question and the answer and the intrinsic quality of the answer’s text are good
proxies for the quality of the answer itself. We divide the features in three di�er-
ent families: Text Quality, Linguistic Similarity and Distributional Semantics.
The first contains features already used in literature, the second mainly comes
from Non-Factoid QA literature, but exploiting new levels of lexicalization, while
the third is completely novel and contains features obtained with distributional
models built on term co-occurrence.

Text Quality

Text Quality (tq) features aim to estimate the intrinsic quality of an answer by
capturing objective properties of the text composition. A summary follows.

Visual Properties This group of features simply evaluate numerically some
properties of the text. The features belonging to this group count the number of
whitespace violations and the whitespace density in the text of the answer. The
same counts oduced for capital letters and capitalization violations, punctuation
density and violations, the URLs in the text, the quoted parts of the answer

Experiments with Community Question Answering 53

and so on. The number of capitalized words and the total count of punctuation
marks are also counted, for a total of 23 features that are widely adopted in the
literature [Agichtein et al., 2008, Dalip et al., 2013]. The features are shown in
Table 6.1.

Group tq Subgroup visual property
Count of auxiliary verb
Count of pronouns
Count of conjunctions
Count of prepositions
Count of occurrences of the verb “to be”
Count of punctuation marks
Minimum length of quoted text
Average length of quoted text
Maximum length of quoted text
Number of quotes
Number of sentences
Number of capitalized words
Number of characters
Number of whitespace violations (lack or redundancy)
Number of URLs
Number of words
Number of capitalization violations (i.e. no capital letter after sentence mark)
Number of question marks
Number of punctuation violations (lack or redundancy)
Number of whitespaces
Punctuation characters over all characters
Whitespace characters over all characters
Capital letters characters over all characters

Table 6.1: Visual Property features

Readability These features evaluate how easy is to read an answer. They
consider the average word length in terms of number of characters and syllables
and the ratio of complex words in the answer. They also include commonly
used readability indices such as Kincaid, Ari, Coleman-Liau, Flesch, Fog, Lix
and Smog, for a total of 16 features that have been already tested in previous
work on CQA [Agichtein et al., 2008, Dalip et al., 2013]. The readability indices
are modeled to capture the education degree or the number of years of study
necessary to understand a text. In practice, they all combine heuristically quan-
titative metrics such as the average length of the sentences and average length
of the words, the number of characters and syllables, counts of single-syllable

Experiments with Community Question Answering 54

and multi-syllable words, the presence of the words in a whitelist. In particular,
the Automated Readability Index is used for both answers and question. The
main motivation is that it is most suited for shorter texts like questions, as it
is adjusted for number of sentences, and it does not consider syllables but just
words and characters, so it is easier and faster to compute.

The features are shown in Table 6.2.

Group tq Subgroup readability
Average words per sentence
Average words length in syllables
Average words length in characters
Number of complex words over all words
Number of unique words
Average unique words per sentence
Flesch-Kinkaid Grade Level
Automated Readability Index
Coleman-Liau Index
Flesch Reading Ease
Gunning-Fog Index
LIX score
SMOG grade
Number of short sentences
Number of long sentences
Automated Readability Index of the question

Table 6.2: Readability features

Informativeness This group of features was considered since a reasonable
answer must contain some information that is not in the question, so we adopt
3 simple features that count the amount of nouns, verbs and adjectives occurring
in the answer but not in the question. The features are shown in Table 6.3.

Group tq Subgroup informativeness
Number of nouns present in the answer but not in the question
Number of verbs present in the answer but not in the question
Number of adjectives present in the answer but not in the question

Table 6.3: Informativeness features

Linguistic Similarity

To the best of our knowledge, the most complete approach for generation of
Linguistic Similarity (ls) features has been considered by Surdeanu et al. [2011].

Experiments with Community Question Answering 55

They adopt di�erent levels of linguistic representation of a text that can be
obtained using NLP algorithms to construct tokens that are then given in input
by di�erent similarity and overlap measures. This part of our work follows the
same approach.

Having analyzed both questions and candidate answers with an NLP pipeline
allows us to build representations of the text using di�erent lexicalization lev-
els: words, stems, lemmas, lemma and PoS tag concatenations, named entities
and super senses as tokens. The representations are lists of token n-grams. As
an example, the sentence “The man plays the piano”, after stopword removal,
can be represented as word unigrams (man, plays, piano) or as lemma+pos uni-
grams (man:NN, play:VBZ, piano:NN) or as super-sense bigrams (noun.person-
verb.competition, verb.competition-noun.artifact).

We also tag the text with dependency parsing and semantic role labeling
[Gildea and Jurafsky, 2002], so we can extract chains from them in the same
way we extract the n-grams. For the dependency parsing the chains are con-
structed in the form of “dependant-relationType-head” but we can extract also
more general chains that do not contain the relationType. For the semantic
role labeling, the chain has the form of “predicate - argumentType - argument”.
Also in this case the argument type can be omitted. The length of the chain
can be increased concatenating the chains of length one that share intermedi-
ate elements. For example, by concatenating unlabeled dependencies from the
previous example we obtain the chains (“man - plays”, “piano - plays”).

Because longer chains do not usually add valuable information because of
their sparsity [Surdeanu et al., 2011] we decide not adopt them. The tokens that
compose the chain can also be at di�erent lexicalization degrees, but to mini-
mize the sparsity we adopted only lemmas and super senses. As for our example,
from the sentence “The man plays the piano” we extract labeled dependencies
lexicalized with lemmas (“piano - dobj - play”, “man - nsubj - play”), their
unlabeled versions (“piano - play”, “man - play”) and the versions with super-
sense lexicalization (“noun.artifact - dobj - verb.competition”, “noun.person -
nsubj - verb.competition”) and (“noun.artifact - verb.competition”, “noun.person
- verb.competition”). The same is done with the semantic role labeling anno-
tations, the possible chains are with argument labels with lemma lexicalization
(“play - A0 - man”, “play - A1 - piano”), without argument labels with lemma
lexicalization (“play - man”, “play - piano”), with argument labels and super-
sense lexicalization (“verb.competition - A0 - noun.person”, “verb.competition -
A1 - noun.artifact”) and without argument labels with super-sense lexicaliza-
tion (“verb.competition - noun.person”, “verb.competition - noun.artifact”).

In order to compare and assess how linguistically similar a question is to
candidate answer, we obtain the chains at di�erent lexicalization level for both
them and then apply a similarity metrics to the obtained chains.

Experiments with Community Question Answering 56

For example, we want to compare the question “Is Guinness a kind of beer?”
with the passage “Guinness produces di�erent kinds of beers”. We extract the
chains of lemma bigrams (excluding stopwords) for the question and we obtain
[be_guinness, guinness_kind, kind_beer]. We do the same for the passage and
we obtain [guinness_produce, produce_di�erent, di�erent_kind, kind_beer]. A
simple similarity metric could be the number of common tokens, in this case we
have one common tokens kind_beer.

Next, we list all the similarity metrics that we apply to the chains.

Overlap The overlap features count the ratio of tokens in common between
the question and the answer as |tqflta|

|tq| , where tq is the set of tokens belonging
to the question and ta the set of tokens belonging to the answer.

With this simple overlap formula we calculate the overlap of unigrams with
all the di�erent lexical levels, resulting in 6 features. Other 15 features are
obtained calculating the overlap of 2-grams, 3-grams and 4-grams of all the
lexicalizations except for the named entities, as they are already n-grams of
words in most of the cases.

We also calculate the overlap of the dependency chains and semantic role
labeling chains, both labeled and unlabeled and both with lemma and super-
sense lexicalizations, resulting in 8 features.

For the di�erent lexicalizations of the unigrams we also calculate the Jaccard
Index as |tqflta|

|tqfita| resulting in additional 6 features. We do not calculate the
Jaccard index for the n-grams and for the dependency and semantic role labeling
chains because of their sparsity.

The 35 overlap features are shown in Table 6.4.

Group ls Subgroup overlap
Overlap of lemmas
Overlap of concatenations of lemmas and PoS tags
Overlap of named entities
Overlap of stems
Overlap of super-senses
Overlap of terms
Overlap of labeled dependencies with lemma lexicalization
Overlap of labeled dependencies with super-sense lexicalization
Overlap of unlabeled dependencies with lemma lexicalization
Overlap of unlabeled dependencies with super-sense lexicalization
Overlap of labeled semantic roles with lemma lexicalization
Overlap of labeled semantic roles with super-sense lexicalization
Overlap of unlabeled semantic roles with lemma lexicalization
Overlap of unlabeled semantic roles with super-sense lexicalization
Jaccard Index of lemmas

Experiments with Community Question Answering 57

Jaccard Index of concatenations of lemmas and PoS tags
Jaccard Index of named entities
Jaccard Index of stems
Jaccard Index of super-senses
Jaccard Index of terms
Overlap of lemma bigram s
Overlap of bigrams of concatenations of lemmas and PoS tags
Overlap of stem bigrams
Overlap of super-sense bigams
Overlap of term bigrams
Overlap of lemma trigram s
Overlap of trigrams of concatenations of lemmas and PoS tags
Overlap of stem trigrams
Overlap of super-sense trigams
Overlap of term trigrams
Overlap of lemma tetragram
Overlap of tetragrams of concatenations of lemmas and PoS tags
Overlap of stem tetragrams
Overlap of super-sense tetragams
Overlap of term tetragrams

Table 6.4: Overlap features

Frequency We use standard Information Retrieval techniques to obtain a
measure of similarity between question and answer that takes into account the
frequency of the tokens in the texts and in the whole corpus. We assign scores
to the question-answer pairs according to the Tf-Idf weighting scheme, to the
BM25 weighting scheme and to the Language Modeling (with Dirichlet priors
[Zhai and La�erty, 2001]) for all the di�erent lexicalization levels except for the
named entities, for a total of 15 features. The features are shown in Table 6.5.

Group ls Subgroup frequency
BM25 with lemmas
BM25 with concatenations of lemmas and PoS tags
BM25 with stems
BM25 with super-senses
BM25 with terms
Language Modeling with lemmas
Language Modeling with concatenations of lemmas and PoS tags
Language Modeling with stems
Language Modeling with super-senses
Language Modeling with terms

Experiments with Community Question Answering 58

TF-IDF with lemmas
TF-IDF with concatenations of lemmas and PoS tags
TF-IDF with stems
TF-IDF with super-senses
TF-IDF with terms

Table 6.5: Frequency features

Density We adopted a slight modification of the Minimal Span Weighting
proposed by Monz [2004], calculating it for all the di�erent lexicalization levels.
This gave us 6 features.

The original formula contains three components: text similarity, span size
ratio and matching term ratio. The text similarity intercepts global similarity,
the span intercepts local similarity and the matching term ratio counterbalances
the local similarity, i.e. in the case of only one term matching out 5 question
terms the span part of the formula would return a value of 1, while the matching
term would be 1

5

. For such a reason, in order to obtain a high local similarity,
the highest number of terms from the question should be present in the smallest
span of terms in the answer.

As we have other features, like the frequency ones, that address for the text
similarity, we retained only the local similarity part, resulting in the following
formula:

3
| tq fl ta |

1 + max(mms) ≠ min(mms)

4 3
| tq fl ta |

| q |

4

where tq and ta are the sets of tokens respectively of the question and the answer;
max(mms) and min(mms) are the initial and final location of the shortest
sequence of answer tokens containing all the question tokens.

The features are shown in Table 6.6.

Group ls Subgroup density
Density of lemmas
Density of concatenations of lemmas and PoS tags
Density of named entities
Density of stems
Density of super-senses
Density of terms

Table 6.6: Density features

Machine Translation Research in machine translation, a sub-field of com-
putational linguistics, investigates th use of computational methods in order to

Experiments with Community Question Answering 59

translate text from one language to another. Due to the availability of aligned
corpora, statistical approaches to MT have rapidly grown in the last decade,
leading to better phrase-based translations.

The objective of machine translation in CQA is to “bridge the lexical chasm”
between the question and the answer. We calculate the probability of the ques-
tion being a translation of the answer P (Q | A) and use it as a feature:

P (Q | A) =
Ÿ

qœQ

P (q | A)

P (q | A) = (1 ≠ ⁄)Pml(q | A) + ⁄Pml(q | C)

Pml(q | A) =
ÿ

aœA

(T (q | a)Pml(q | A))

where the probability that the question term q is generated from answer A,
P (q | A), is smoothed using the prior probability that the term q is generated
from the entire collection of answers C, Pml(q | C) and ⁄ is the smoothing
parameter. Pml(q | C) is computed using the maximum likelihood estimator.

As the translation of a word to itself P (w | w) is not guaranteed to be high,
we set P (w | w) = 0.5 and re-scale P (wÕ|w) for all the other wÕ terms in the
vocabulary to sum up to 0.5, so that

q
wÕœW (wÕ | w) = 1. This is needed for

the adoption of translation models for retrieval tasks, as the exact world overlap
of question and answer is a good predictor [Surdeanu et al., 2011].

Calculating the translation models for all the lexicalization degrees and for all
the combinations of dependencies and semantic role labeling chains, we obtain
14 features. The features are shown in Table 6.7.

Group ls Subgroup machine translation
Machine Translation of lemmas
Machine Translation of concatenations of lemmas and PoS tags
Machine Translation of named entities
Machine Translation of stems
Machine Translation of super-senses
Machine Translation of terms
Machine Translation of labeled dependencies with lemma lexicalization
Machine Translation of labeled dependencies with super-sense lexicalization
Machine Translation of unlabeled dependencies with lemma lexicalization
Machine Translation of unlabeled dependencies with super-sense lexicaliza-
tion
Machine Translation of labeled semantic roles with lemma lexicalization
Machine Translation of labeled semantic roles with super-sense lexicalization
Machine Translation of unlabeled semantic roles with lemma lexicalization
Machine Translation of unlabeled semantic roles with super-sense lexicaliza-
tion

Experiments with Community Question Answering 60

Table 6.7: Machine Translation features

Others We consider 4 additional miscellaneous features: the length of the
exact overlap of the sequences of words in the question and the answer nor-
malized by the length of the question, the length ratio of the question and the
answer, the inverse of the length of the answer and the inverse of the length of
the question. The features are shown in Table 6.8.

Group ls Subgroup other
Number of consecutive overlapping words
Length of the answer over the length of question (in characters)
1 over the length of the answer
1 over the length of the question

Table 6.8: Other features

Distributional Semantics

We already introduced the DSMs, their construction and the way they are used
as features in Chapter 3.

Group ls Subgroup distributional semantics
Semantic similarity using the LSA on Wikipedia corpus
Semantic similarity using the Random Indexing on Wikipedia corpus
Semantic similarity using the LSA after Random Indexing on Wikipedia cor-
pus
Semantic similarity using the Continuous Skip-gram Model on Wikipedia
corpus
Semantic similarity using the LSA on Yahoo! Answers corpus
Semantic similarity using the Random Indexing on Yahoo! Answers corpus
Semantic similarity using the LSA after Random Indexing on Yahoo! Answers
corpus
Semantic similarity using the Continuous Skip-gram Model on Yahoo! An-
swers corpus

Table 6.9: Distributional-Semantics-based features

For computing the Distributional Semantics (ds) features for this set of ex-
periments, we construct the M matrix both using Wikipedia as a corpus and
using the set of all the answers in the training set obtained from the Yahoo!
Answers 2011 dataset that we use for the evaluation (see Section 6.4 and Sec-
tion 6.6). We do so to use both general purpose texts incorporating common

Experiments with Community Question Answering 61

sense knowledge and knowledge that is specific to the dataset we want to actu-
ally use.

We exploit three methods for approximating the original matrix by rank
reduction: Latent Semantic Analysis (LSA) [Deerwester et al., 1990], Random
Indexing (RI) [Kanerva, 1988] and LSA over RI (LSARI) [Sellberg and Jöns-
son, 2008]. We furthermore adopted the Continuous Skip-gram Model (CSG)
[Mikolov et al., 2013b] for learning word vector representations. The aim of
these methods varies from discovering high-order relations between entries to
improving e�ciency by reducing its noise and dimensionality. The number of
dimensions of the vector representations for all the methods is 400, stopwords
are removed and only unigrams are considered.

We represent the question and the answers as the sum of the vectors of
the terms they contain and then we calculate the cosine similarity of the two
resulting vectors. We calculate the cosine similarity scores using vectors from
the three types of semantic spaces constructed on both the corpora, resulting
in 8 features.

The features are shown in Table 6.9.

6.3.2 User Features
A considerable part of the features are related to the user-centric activity, to
capture their behavior and history. The question and answer history and some
standard fields from the public profile description are usually available in all
major CQA platforms. We also assume that questions are tagged with a cate-
gory, which is the case for most of the communities that enforce a strict category
systems or allow the possibility of collaborative tagging. Although most of the
features we present here have been used in prior literature of best answer se-
lection [Agichtein et al., 2008], the decomposition of the same features across
di�erent question categories has never been explored in this context. The sub-
groups of user features are summarized next.

User Profile The user profile contain information that might be a good proxy
for the level of user’s involvement in the community. These include: the presence
of a resume, of a textual self-description of the user, of a title and a profile picture
(surprisingly, a remarkably good estimator of expertise [Gînsca and Popescu,
2013]) and the amount of time the user has been registered on the platform at
the time the question was asked (we refer to it as age for simplicity), for a total
of 5 features. The features are shown in Table 6.10.

Group u Subgroup profile
Presence of a resume in the user profile (1 if present, 0 otherwise)
Length of the resume (in characters)

Experiments with Community Question Answering 62

Presence of a title in the user profile (1 if present, 0 otherwise)
Presence of a picture in the user profile (1 if present, 0 otherwise)
Time since the account creation

Table 6.10: User Profile features

Question and Answers The number of questions the user asked, deleted,
answered, flagged, starred, and their normalized versions by user age are the
basic gages for user activity. In addition to that, we also compute the ratio of
those values divided by all the questions asked. We replicate the same features
we calculated on the questions asked by the user also on the answers given
by the user, adding also features about the thumbs up and down received by
the answers and their ratio and delta. Overall, we define 19 features for the
questions and 19 for the answers. The features are shown in Table 6.11.

Group u Subgroup question answer
Number of (not deleted) questions asked by the user
Number of deleted questions asked by the user
Number of answered questions asked by the user
Number of flagged questions asked by the user
Number of questions with a star asked by the user
Number of (not deleted) questions asked by the user over the time since the
account creation
Number of deleted questions asked by the user over the time since the account
creation
Number of answered questions asked by the user over the time since the
account creation
Number of flagged questions asked by the user over the time since the account
creation
Number of questions with a star asked by the user over the time since the
account creation
Number of (not deleted) questions over all the questions asked by the user
Number of deleted questions over all the questions of the user
Number of answered questions over all the questions asked by the user
Number of flagged questions over all the questions asked by the user
Number of questions with a star over all the questions asked by the user
Minimum Automatic Readability Index of questions asked by the user
Maximum Automatic Readability Index of questions asked by the user
Average Automatic Readability Index of questions asked by the user
Number of questions over number of answers given by the user
Number of (non deleted) answers given by the user
Number of deleted answers given by the user

Experiments with Community Question Answering 63

Number of best answers given by the user
Number of flagged questions asked by the user
Number of (not deleted) answers given by the user over the time since the
account creation
Number of deleted answers given by the user over the time since the account
creation
Number of best answers given by the user over the time since the account
creation
Number of flagged answers given by the user over the time since the account
creation
Number of (not deleted) answers over all the answers given by the user
Number of deleted answers over all the answers given by the user
Number of best answers over all the answers given by the user
Number of flagged answers over all the answers given by the user
Number of positive votes that the answers given by the user have received
Number of negative votes that the answers given by the user have received
Di�erence of positive and negative votes that the answers given by the user
have received
Number of positive votes over number of negative votes that the answers
given by the user have received
Minimum Automatic Readability Index of answers given by the user
Maximum Automatic Readability Index of answers given by the user
Average Automatic Readability Index of answers given by the user

Table 6.11: Question Answer features

Question Categories We replicate the same features defined for the question
and answer history of the user, but considering only the category of the question
actually asked. For example, if the question belongs to the category “sports” we
count the questions asked and the answers given by the users in that category.
This will help us estimate the user expertise and how much the user is engaged
in the specific topic rather than his generic expertise or interest in di�erent
topics than the one the asker is interested in.

So we add additional 19 features for questions in the category and other 19
for the answers in the category.

We also add 3 additional features that consider the entropy H of discrete
probability distribution p obtained by counting the number of questions, the
number of answers and the combined number of question and answers in all the
di�erent categories (ÎpÎ is the number of categories).

H(p) = ≠
ÎpÎÿ

i=0

pi log
2

pi

Experiments with Community Question Answering 64

This allows us to evaluate how specific (high entropy) or spread out (low en-
tropy) the user knowledge (or interest) is. The features are shown in Table 6.12.

Group u Subgroup category
Number of (not deleted) questions asked by the user in the category of the
question
Number of deleted questions asked by the user in the category of the question
Number of answered questions asked by the user in the category of the ques-
tion
Number of flagged questions asked by the user in the category of the question
Number of questions with a star asked by the user in the category of the
question
Number of (not deleted) questions asked by the user over the time since the
account creation in the category of the question
Number of deleted questions asked by the user over the time since the account
creation in the category of the question
Number of answered questions asked by the user over the time since the
account creation in the category of the question
Number of flagged questions asked by the user over the time since the account
creation in the category of the question
Number of questions with a star asked by the user over the time since the
account creation in the category of the question
Number of (not deleted) questions over all the questions asked by the user in
the category of the question
Number of deleted questions over all the questions of the user in the category
of the question
Number of answered questions over all the questions asked by the user in the
category of the question
Number of flagged questions over all the questions asked by the user in the
category of the question
Number of questions with a star over all the questions asked by the user in
the category of the question
Minimum Automatic Readability Index of questions asked by the user in the
category of the question
Maximum Automatic Readability Index of questions asked by the user in the
category of the question
Average Automatic Readability Index of questions asked by the user in the
category of the question
Number of questions over number of answers given by the user in the category
of the question
Number of (non deleted) answers given by the user in the category of the
question

Experiments with Community Question Answering 65

Number of deleted answers given by the user in the category of the question
Number of best answers given by the user in the category of the question
Number of flagged questions asked by the user in the category of the question
Number of (not deleted) answers given by the user over the time since the
account creation in the category of the question
Number of deleted answers given by the user over the time since the account
creation in the category of the question
Number of best answers given by the user over the time since the account
creation in the category of the question
Number of flagged answers given by the user over the time since the account
creation in the category of the question
Number of (not deleted) answers over all the answers given by the user in
the category of the question
Number of deleted answers over all the answers given by the user in the
category of the question
Number of best answers over all the answers given by the user in the category
of the question
Number of flagged answers over all the answers given by the user in the
category of the question
Number of positive votes that the answers given by the user have received in
the category of the question
Number of negative votes that the answers given by the user have received
in the category of the question
Di�erence of positive and negative votes that the answers given by the user
have received in the category of the question
Number of positive votes over number of negative votes that the answers
given by the user have received in the category of the question
Minimum Automatic Readability Index of answers given by the user in the
category of the question
Maximum Automatic Readability Index of answers given by the user in the
category of the question
Average Automatic Readability Index of answers given by the user in the
category of the question
Entropy of the vector constructed by counting the number of questions in
each category
Entropy of the vector constructed by counting the number of answers in each
category
Entropy of the vector constructed by counting the number of questions and
answers in each category

Table 6.12: Category features

Experiments with Community Question Answering 66

Behavioral Other features are related to the user behavior on the system.
We count how many positive and negative votes are provided, plus their deltas
and ratios, we measure the answering speed as the temporal gap between the
time of the question and answer publications, and so on, for a total of 8 features.
The features are shown in Table 6.13.

Group u Subgroup behavioral
Internal Yahoo! Answer authority score of the user
Number of flags given by the user
Number of positive votes given by the user
Number of negative votes given by the user
Di�erence between the number of positive votes and the number of negative
votes given by the user
Number of positive votes over the number of negative votes given by the user
Time between the question is posted and the answer is given by the user
Number of answers given to this question

Table 6.13: Behavioral features

6.3.3 Network Features
The network (n) features we propose arise from expert finding literature, where
a content-agnostic analysis of the interactions between participants in CQA is
shown help rank people by their general expertise in answering questions. For
instance, users who provided high-quality answers (i.e., marked as best answers)
to many questions, will likely provide good answers in future interactions as well.
Also, the estimation of the users’ expertise may not depend just on their direct
interactions, but also from the interactions of other users, in a recursive fashion.
For example one might imagine that, given a specific domain of knowledge, an-
swering correctly a question made by an expert is a better indication of expertise
than answering a question made by a newbie.

These considerations has motivated past research in the study of Expertise
Networks [Zhang et al., 2007a], especially for CQA. Expertise Networks are
weighted graphs where nodes are users and weighted edges model interactions
that account for the flow of activity, knowledge or status di�erences among
peers. In the past, three main Expertise Networks have been defined and studied
for CQA. We provide visual examples for each in Figure 6.1.

The first is the Asker Replier Network (ARN) [Jurczyk and Agichtein, 2007],
where directed edges flow from askers to answerers and are weighted by the
number of replies. The second is the Asker Best-Answerer Network (ABAN)
[Bouguessa et al., 2008, Gyongyi et al., 2007], where directed edges flow from
askers to the best answerers and are weighted by the number of best answers

Experiments with Community Question Answering 67

E

Question Answering Network Asker-Replier Network

Asker Best Answer Network

Competition-Based
Expertise Network

DA

C

B

F

Q1

Q2

Q3

ED

A

C

B

F

ED

A

C

B

D

E

F

C

X

QX

User

Question

Asks question

Answers to question

Best Answer

Expertise netwrk link

Figure 6.1: The graph of relations between askers, questions, and answerers
(left) and the three types of Expertise Networks derived by it (right).

given. The last is the Competition-Based Expertise Network (CBEN) [Aslay
et al., 2013], where edges flow between all the users who answered the same
question towards the user who gave the best answer to that question; the possi-
bility of building such a network is conditioned by the possibility for the users to
explicitly mark the best answer, which is most often true in large scale CQAs.
The advantage of ARN is that it needs less information to be built but, ignor-
ing the signal coming from the best answer, it considers all the answers to have
equal value. ABAN addresses this problem but on the other hand it disregards
the information of people who answered and whose answer was not selected as
the best. CBEN was proposed to take into account both aspects and to capture
at the same time the inherent competition that exists between answerers to get
awarded with the best answer. Also, no relation between asker and answerer is
represented in CBEN under the assumption that asking a question is not nec-
essarily related to a lack of expertise [Zhang et al., 2007a,b], especially in broad
general purpose question answering communities.

Experiments with Community Question Answering 68

The application of graph centrality metrics to the Expertise Networks men-
tioned above produces a ranking of the users based on their expertise. Depend-
ing on the specific combination of network and centrality, the ranking might con-
vey di�erent meanings, but in all the cases users with higher scores are supposed
to have higher expertise compared to their peers with lower scores. In previous
work, this assumption was validated by multiple experiments and some specific
network-centrality combinations (PageRank on ARN, indegree on ABAN, HITS
on CBEN) have proved to work best in the task of best answer prediction [Aslay
et al., 2013]. In this work we aim to include in a learning to rank framework a
wide set of features, therefore we do not restrict ourselves to specific pairs but
we consider instead all the combinations of Expertise Networks (ARN, ABAN,
CBEN) with the centrality metrics that have been applied to them in past work
(PageRank [Page et al., 1999], HITS [Kleinberg, 1999], indegree) for a total of
9 features. We consider networks built on the full question-answer dataset with
no distinction of topic, as we want to measure general expertise with network
features and account for relevance with the textual features. Such features are
shown in Table 6.14.

Group n Subgroup arn - aban - cben
Indegree of the user in the Asker Replier Network
PageRank of the user in the Asker Replier Network
Hits Authority of the user in the Asker Replier Network
Indegree of the user in the Best-Answerer Network
PageRank of the user in the Best-Answerer Network
Hits Authority of the user in the Best-Answerer Network
Indegree of the user in the Competition-Based Expertise Network
PageRank of the user in the Competition-Based Expertise Network
Hits Authority of the user in the Competition-Based Expertise Network

Table 6.14: Network features

6.4 Dataset
The instance of CQA we consider for our experiments is Yahoo! Answers, be-
cause of its popularity and richness of content. Launched in 2005, it is one of the
largest general purpose CQA services to date, hosting questions and answers on
a broad range of topics, categorized through a predefined two-level taxonomy.
There are 26 predefined Top-Level Categories (TLC), such as Politics, Sports
or Entertainment, and a growing number of Leaf-Level Categories (LLC) –more
than 1,300 at the time of this study– such as Makeup or Personal Finance. Sim-
ilarly to other CQA portals, Yahoo! Answers follows a strict question-answer

Experiments with Community Question Answering 69

format, with questions submitted as short statements with optional detailed
description, and a mandatory leaf-level category that is assigned by the asker.
Questions have a lifecycle of states that goes from open, to voting and finally to
resolved, and users can actively moderate content using several feedback mech-
anisms, such by marking spam or abusive content, adding stars to interesting
questions, voting for best answers, and giving thumbs-up or thumbs-down rat-
ings to answers. Among all the feedback signals, the most important is the
selection of the best answer, which is designated by the asker or, if the asker
does not provide it after a given time, it is selected by the community with
majority vote. The process of best answer selection is important not only to
reward contributors according to the Yahoo! Answers incentive scheme1, but
also for archival purposes, as the best answer will be given evidence in the page
and will serve users who might have the same question in the future.

6.4.1 Yahoo! Answers 2011
We first collected a data sample from Yahoo! Answers related to the period
between January and December 2011, for a total of > 7.2M resolved questions
with best answer assigned by the asker, > 39.5M answers and > 6.1M unique
users. The dataset contains the text of the question and answers, their metadata
(timestamp, question category, number of thumbs up and down, best answer
mark) and the metadata associated to the user involved in the process (user self-
description, subscription date, number of questions asked and answers given,
number of best answers, presence of thumbnail photo in the profile). Each
question has only one answer marked as the best one.

As Yahoo! Answers is a general purpose portal, not only it covers di�erent
topics but it also hosts a broad variety of question types.

In practice, every forum category has some mix of requests for factual in-
formation, advice seeking and social conversation or discussion [Harper et al.,
2009]. The most refined categorization obtained on Yahoo! Answers so far has
been proposed by Aslay et al. [2013], who extended the seminal work by Adamic
et al. [2008] and used k-means to cluster Yahoo! Answers leaf level categories
using features such as the average number of replies to a question and the av-
erage number of characters in a reply, and some activity-based features such
as the proportion of questions with contradictory answer ratings (thumbs up
vs. thumbs down). The optimal R2 was obtained for k = 4, corresponding
to the following main question types: factual-information seeking (31% of the
questions), subjective-information seeking (32%), social discussion (10%), and

1
A new user is granted 100 points and asking a question costs 5 points. Several

user actions are worth new points, among which the submission of an answer that is

the most rewarding one (, as it is worth ()10 points). Detailed scheme available at:

http://answers.yahoo.com/info/scoring_system

Experiments with Community Question Answering 70

poll-survey conducting (27%). We use this categorization to compare the feature
performance also across question types.

6.4.2 Yahoo! Answers Manner Questions
To compare our results directly against some state-of-the-art methods, we de-
cided to replicate the experiments with a freely available dataset 2 that contain
a sample of manner questions collected from the US Yahoo Answers site. Man-
ner questions are those questions that ask how to do something. Following what
was done in previous work [Surdeanu et al., 2011], the manner questions are ex-
tracted following two simple heuristics that aim at preserving only high quality
questions and answers. This is done by retaining all the questions that i) match
the regular expression: how (to | do | did | does | can | would | could |
should), and ii) have at least four words, out of which at least one is a noun
and at least one is a verb. This process yields 142, 627 questions and 771, 938
answers, with an average of 5.41 answers for each question.

6.5 Experimental Setup
Next we describe the problem under study and the framework we use to address
it, along with four baselines we compare our method against.

Problem Statement
Given in input a question q and the set of its answers A(q), among which exactly
one answer aú œ A(q) has been selected as best answer, output a rank of the
answers in the set A(q) that has a high likelihood of aú being placed high in the
rank. This problem is a generalization of the best answer selection, and can be
reduced to it if only the first element in the ranking is considered, but allows a
more detailed analysis of the results and a richer comparison between methods.

6.5.1 Learning to Rank for Best Answer Prediction
We already introduced the Learning to Rank setting in Chapter 4. We opted for
Random Forests (RF) [Breiman, 2001] because of its resilience to overfitting, a
problem that may a�ect our experimental setting due to the size of our dataset,
and because of the successful results in several use cases related to CQA [Dalip
et al., 2013] and in other large scale retrieval experiments [Mohan et al., 2011].

2
http://webscope.sandbox.yahoo.com/catalog.php?datatype=l

Experiments with Community Question Answering 71

System Configuration
With respect to the general architecture we described in Chapter 2, the config-
uration of the system consists of:

• all the English NLP analyzers (except Word Sense Disambiguation, as it
was too computationally expensive to carry out on the large-scale dataset
we are adopting),

• all the di�erent search engines (their score are used for calculating the
frequency features described in Section 6.3.1,

• all features extractors presented in Section 6.3,

• the Random Forests implementation described in Section 4.4 as ranker.

Baselines
We compare our approach with four di�erent baselines.

• BM25. Standard ranking function used in information retrieval to rank
matching documents according to their relevance to a given search query.
We consider the question as query and the answers as documents. We
chose this baseline over other IR baselines because it is the best performing
one in our dataset.

• Finding high-quality content in social media Agichtein et al. [2008]. A
supervised method trained on measures of Text Quality such as gram-
matical, syntactic and semantic complexity, punctuation and typo errors,
along with simple question-answer similarity and user expertise estima-
tions. Readability and informativeness are also included. Their best
performance was achieved using Stochastic Gradient Boosted Trees. We
replicated their learning approach and feature set, as the dataset they
adopted for the experiments was made of 8,366 question/answer pairs so
their results were not directly comparable with ours. We chose this base-
line because it was the state of the art on Yahoo! Answers data.

• Learning to Rank Answers Surdeanu et al. [2011]. Combines linguistic
features, those based on translation, classical frequency, density ones and
web-correlation based ones with a learning to rank approach, carried out
with an averaged perceptron. It was applied on the Yahoo! Answers
Manner Questions dataset as a testbed. The authors did not use any
user-based feature nor expertise-based ones as this kind of information
is missing from the dataset, but they also did not adopt Text Quality
features that we adopt and the levels of lexicalizations of their linguistic

Experiments with Community Question Answering 72

features are only terms, lemmas and super-senses. We chose this baseline
because it was the state of the art on Yahoo! Answers Manner Questions
dataset for P@1.

• Improved answer ranking Hieber and Riezler [2011]. Similar to the previ-
ous one, this work relies mainly on textual features, but adopting Piggy-
backing features on web snippets. The ranking is done adopting a SVM-
based ranker. Their evaluation was carried out on Yahoo! Answers Man-
ner Questions dataset as well. We chose this baseline because it was the
state of the art on Yahoo! Answers Manner Questions dataset for MRR.

6.6 Experimental Results
We evaluate our learning to rank framework splitting the dataset into 70% train-
ing, 10% development and 20% test, using a temporal criterion (older questions
for training). The 10% development was needed for tuning machine translation
parameter ⁄ (see Section 6.3.1). For each question, all its answers are ranked
by the learning to rank method. To allow a direct comparison of the quality
of the ranking with results in previous work, we use three standard IR metrics
that have been commonly used to evaluate this task, namely Mean Reciprocal
Rank (MRR), Precision at 1 (P@1) and Discounted Cumulative Gain (DCG).
When considering the answers to a single question, these are formally defined
as follows:

RR = 1
rank(BA) DCG

k

=
qk

i=1

2

reli ≠1

log2(i+1)

P@1 = rel
1

where A is the set of answers, rank(BA) is the rank of the best answer for that
question, and reli is an indicator function of relevance that returns 1 if the an-
swer in the ith position in the ranking is the best answer. All the scores are then
averaged over all the questions (1

|Q|
q

qœQ score(q)). In case the best answer is
ranked first, MRR = DCG = P@1 = 1. As each question has only one an-
swer marked as correct (the best answer) the DCG = nDCG, because the ideal
DCG is equal to 1. All di�erences have to be considered statistically significant
(using the non-parametric Randomization test, as suggested in [Smucker et al.,
2007], with p < 0.01) unless otherwise specified.

6.6.1 Performance Analysis (Yahoo! Answers 2011)
To gain insights about the predictive power of di�erent feature families, we train
the model on several subsets of features, with a greedy selection procedure. We
first separately test each family and pick the best performing one; at the next
step, we keep that family and combine it with all the others to select the best

Experiments with Community Question Answering 73

Features P@1 MRR DCG
BM25 0.4143 0.5532 0.6567

Agichtein et al. [2008] 0.5243 0.6375 0.6962
tq 0.5305 0.7016 0.7655
ls 0.5143 0.6921 0.7613
ds 0.4782 0.6760 0.7564
u 0.5218 0.7009 0.7757
n 0.4527 0.6645 0.7484

tq+u 0.6201 0.7597 0.8260
tq+n 0.5862 0.7366 0.8080

tq+ds 0.5536 0.7144 0.7910
tq+ls 0.5515 0.7129 0.7897

tq+u+n 0.6416 0.7742 0.8370
tq+u+ds 0.6210 0.7606 0.8266
tq+u+ls 0.6199 0.7597 0.8260

tq+lo+ds 0.5519 0.7143 0.7901
tq+u+n+ds 0.6450 0.7752 0.8379

tq+u+n+ls 0.6414 0.7739 0.8368
all 0.6471 0.7798 0.8389

Table 6.15: Predictive power of the learning to rank framework trained on
di�erent feature subsets, on the Yahoo! Answers 2011 dataset.

Feature families are Text Quality (tq), Linguistic Similarity (ls), Distributional
Semantics (ds), User (u), and expertise network (n). Best feature combinations
in each section of the table are highlighted in bold.

combination. The process is repeated until all the feature families are included.
The greedy strategy allows us to find a locally optimal choice at each stage,
with the hope of finding a global optimum in a reasonable time. Results are
shown in Table 6.15.

The most predictive features are the ones belonging to the tq family. This
group includes 44 features that capture many facets of the text structure that are
indeed good proxies for the answer quality. On the other hand, n features alone
are the worst performing; this is expected as centrality metrics capture general
expertise in a content-agnostic way, so they do not embed information about
the topic or structure of the questions and answers. A similar consideration can
be done for the user features even though their performance is sensibly higher
than the network features. This supports the findings in previous work [Chen
and Nayak, 2008], that found simple user features such as the percentage of
best answers very predictive of the level of user expertise. Finally, ls features

Experiments with Community Question Answering 74

Feature �
tq: Preposition Count 0.049
tq: Verbs not in Question 0.045
tq: Nouns not in Question 0.045
tq: Unique Words in Answer 0.043
tq: Pronouns Count 0.042
tq: Punctuation Count 0.039
tq: Average Words per Sentence 0.039
ds: Random Indexing on Yahoo! Answers 0.039
ls: Super-senses Overlap 0.038
tq: Adjectives not in Question 0.036
tq: Conjunctions Count 0.035
tq: Capitalized Words Count 0.035
tq: “To be” Count 0.035
ls: Lemma Overlap 0.034
ls: Stem Overlap 0.034
ls: Term Overlap 0.032
tq: Auxiliary Verbs Count 0.034
ls: Super-senses BM25 0.031
n: Indegree on CBEN 0.030
u: Answerer’s Best Answer Ratio 0.030

Table 6.16: Ablation test.

� measures the loss of performance in MRR when the feature is removed, when
the full set of features is employed. Prefixes in names indicate the family of the
feature.

outperform the ds features, when used in isolation; this may be mainly due to
the very di�erent dimensionality of the feature sets as Distributional Semantics
include a set of just 6 features. Regarding the baselines, we note, as expected,
that an approach that is not specifically tailored on the task like BM25 performs
poorly. The method from Agichtein et al. [2008] has also a performance that is
lower than the ones obtained by the single feature families partially because of
the di�erent training procedure but mainly because it is trained with a set of
features that is smaller than the ones we consider inside each family.

When combining features in pairs, interesting patterns emerge. Even though
tq and ls are the best performing individually, their combination improves the
performance only slightly as the signal they bring is very overlapping. Indeed,
their combination is the worst performing among all the feature pairings. The
same happens with ds features. n, and especially u features, are instead more

Experiments with Community Question Answering 75

orthogonal to the tq information and are able to boost the performance con-
siderably. Most importantly, we find that n and u features carry predictive
information that is non-overlapping, as the combination of both with tq fea-
tures results in further noticeable improvement.

Combinations of three feature groups or more make clear that, despite the
high informativeness on their own, the ls features give a fairly small contribution
to the performance and replacing them with ds features leads even to a small
improvement. Given that the time of computation of the ls features is roughly 12
times more than the ds ones (as empirically measured in our test), it appears
that ds features are stronger and more lightweight (they are very few) and
therefore are more viable alternative.

The MRR score obtained with the combination of all the feature groups is a
22% improvement over the baseline, while the P@1 score is a 23% improvement
and DCG score is a 21% improvement.

Besides the greedy aggregation of feature families, to discover which sin-
gle features give the best signal for the prediction, we run an ablation test to
measure the performance decrease � in the prediction when single features are
removed from the set. The 20 ones with the highest values of � are reported in
Table 6.16. We note that, although tq features tend to dominate, one feature
from ds and one from n make it into the top 20 (8th and 19th, respectively).

As final remark, we note that when plotting the MRR and DCG for rankings
that include the top n results only (Figure 6.2) we see that the values tend to
increase considerably in the first positions of the ranking, meaning that the best
answer, if not ranked as first, is usually ranked among the top 2 or 3 answers.

6.6.2 Detailed Analysis of Proposed Features

Feature Rank
ds: Random Indexing on Yahoo! Answers 8
ds: Continuous Skip-gram Model on Yahoo! Answers 30
ds: LSA on Wikipedia 37
ds: LSA after Random Indexing on Wikipedia 38
ds: Continuous Skip-gram Model on Wikipedia 39
ds: Random Indexing on Wikipedia 40
ds: LSA after Random Indexing on Yahoo! Answers 89
ds: LSA on Yahoo! Answers 90

Table 6.17: Distributional-Semantics-based features ablation ranking

We analyzed in more the detail the results of the ablation test, focusing on
the newly proposed features.

Experiments with Community Question Answering 76

ya_result_n

Page 1

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

bm25

tq

lo

ds

u

n

all

n

D
C
G

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n

M
R
R

bm25

tq

lo

ds

u

n

all

ya_result_n

Page 1

1 2 3 4 5 6 7 8 9 10

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

bm25

tq

lo

ds

u

n

all

n

D
C
G

ya_result_n

Page 1

1 2 3 4 5 6 7 8 9 10

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

bm25

tq

lo

ds

u

n

all

n

M
R
R

ya_result_n

Page 1

1 2 3 4 5 6 7 8 9 10

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

bm25

tq

lo

ds

u

n

all

n

M
R
R

Figure 6.2: MRR and DCG computed for the first n positions of the ranking,
for the di�erent features families, plus the BM25 baseline and the full set of
features.

Experiments with Community Question Answering 77

Feature Rank
n: Indegree on CBEN 19
n: Hits on CBEN 32
n: Indegree on ABAN 101
n: Hits on ABAN 108
n: Indegree on ARN 161
n: Hits on ARN 164
n: PageRank on ARN 170
n: PageRank on CBEN 183
n: PageRank on ABAN 184

Table 6.18: Network features ablation ranking

Considering the features based on Distributional Semantics (ds), reported in
Table 6.17, we can clearly see that the best performing feature, Random Index-
ing on Yahoo! Answers, ranks 8-th. This is encouraging and suggests that the
adoption of textual data coming from the dataset itself is helpful. Continuous
Skip-gram Model on the same datasets is the second best one, ranking 30-th,
supporting the suggestion of the Random Indexing feature. The other two fea-
tures using models learned on the same dataset rank 89-th (LSA over Random
Indexing) and 90-th (LSA), almost in the middle of the ranking. The di�erence
with respect to Random Indexing suggests that probably the number of dimen-
sions (400) is not an appropriate choice for the LSA, and an optimization of this
parameter could lead to improvements.

The features that adopt Wikipedia as a text source for learning the models
rank really close: 37-th for LSA, 38-th for LSA over Random Indexing, 39-th
for Continuous Skip-gram Model and 40-th for Random Indexing. This suggests
that the di�erences in models, in this case, are less influent than the dataset
itself. As Wikipedia contains more than 4 million articles, the huge quantity of
text in this dataset leads to similar behaving models.

Considering the Network based features (n), reported in Table 6.18, the best
performing network structure is the Competition-Based Expertise Networks.
Two features based on models calculated on this network are the top ranked:
Indegree on CBEN is 19-th and Hits on CBEN is 32-nd. The same two models
calculated on the Asker Best-Answerer Network are ranked in the middle of
the ranking, 101-st and 108-th respectively, while those calculated on the Asker
Replier Network are ranked lower in the ranking, 161-st and 164-th. The fact
that both models, the simple indegree and the Hits authority, are found really
close in the ranking suggests that they behave in a really similar way. At the
bottom of the ranking we found the PageRank model calculated on ARN (170-
th), on CBEN (183-rd) and ABAN (184-th). This suggests that PageRank is

Experiments with Community Question Answering 78

not a good fit in this setting and leads to quite bad results.

6.6.3 Performance Analysis (Yahoo! Answers Manner Ques-
tions)

Features P@1 MRR DCG
BM25 0.4112 0.5606 0.6121

Surdeanu et al. [2011] 0.5091 0.6465 -
Hieber and Riezler [2011] 0.4844 0.6676 -

ds 0.6118 0.7689 0.8198
ls 0.618 0.7717 0.8236

tq 0.6245 0.7857 0.8352
ds+ls 0.618 0.7721 0.8236

ds+tq 0.6532 0.7920 0.8421
ls+tq 0.6401 0.7855 0.8352

ds+ls+tq 0.6532 0.7922 0.8425

Table 6.19: Predictive power of the learning to rank framework trained on
di�erent feature subsets, on the Yahoo! Answers Manner Questions dataset.

The last two baselines we consider (Surdeanu et al. [2011] and Hieber and
Riezler [2011]) have been applied to the smaller Yahoo! Answers Manner Ques-
tions dataset described in Section 6.4. To get a fair comparison with them,
we replicate their same experimental setup on the same dataset, and repeat
the greedy feature family combination as described before. A Random Forest
model is learned for each feature set, performances are reported in Table 6.19.
Di�erently from the previous dataset, we do not perform a temporal split as
timestamps are not available in the dataset, so we perform 5-fold cross valida-
tion with a 70-10-20 split (10% being a validation set).

All the three groups improve over the baseline significantly both in P@1
and MRR, with tq being the most e�ective. It is worth noticing that the
distributional semantics-based features alone (8 features) can compete with the
other two groups of features, which are composed of 42 features for tq and 74
for ls.

Taking into account the combinations of features we observe that the best
performing one is the composition of ds and tq. The combinations of ds and
ls does not improve at all for P@1 and improves just of 0.004 for MRR over the
ls group alone, a non statistically significant improvement. This is expected as
both groups try to intercept the topical similarity between question and answer.

The most interesting result that can be observed is that adding the ls group
to the previous best scoring group ds+tq does not improve the performances

Experiments with Community Question Answering 79

at all for P@1 and improves just of 0.002 for MRR and 0.004 for DCG, again
a non statistically significant improvement. This finding suggests that in this
setting the linguistic features, that requires a really expensive preprocessing to
be computed, can be substituted with a single features based on Distributional
Semantics of words without any loss of accuracy.

Finally, the best P@1 scores obtained with the ds+tq and ds+tq+ls fea-
ture groups are a 27% improvement over the state of the art (best of the three
baselines), while the best MRR scores obtained with the ds+tq+ls features
group are an improvement of 18% over the state of the art.

6.6.4 Question Categories
Di�erent types of questions may imply di�erent notions of “high-quality” an-
swer. To investigate this aspect, we get back to the bigger Yahoo! Answers 2011
dataset and we break down the performance of the di�erent feature families by
the four question categories we defined in Section 6.4. For brevity, we report
the values for MRR only (P@1 and DCG follow the same trends) and limit the
analysis to feature families taken in isolation.

Factual Subjective Discussion Poll
tq 0.7329 0.7242 0.6676 0.6762
ls 0.7243 0.7117 0.6482 0.6350
ds 0.6879 0.6738 0.6377 0.6498
u 0.7221 0.7118 0.6724 0.6878
n 0.7003 0.6953 0.6132 0.6214

all 0.8059 0.7898 0.7508 0.7644

Table 6.20: MRR scores obtained with single feature families on the Yahoo!
Answers 2011 dataset.

In agreement with previous work [Aslay et al., 2013], the best answer is more
di�cult to predict for discussion and poll-type questions, as they are naturally
less suited to expert ranking. Best answers for factual and subjective questions
are better surfaced by the tq features, while the u features are dominating
discussions and polls.

Focusing on the novel features we introduce, we note their complementary
behavior, being ds better than n in polls and discussion (and even better than
ls for polls) but worse in factual and subjective questions. Also, it is worth
noting that ds has the smaller variance in performance across categories.

Experiments with Community Question Answering 80

6.6.5 Di�erent Algorithms
Our decision to use a pointwise approach like RF as ranking algorithm is based
on the intuition that pairwise and listwise approaches are not likely to be more
e�ective because of the presence of only one correct answer for each question in
the dataset. This means that we have a number of equally wrong answers that
we cannot distinguish based on their relevance to the answer, so the full list of
answers is not likely to bring more information than the single answers.

Moreover, due to the large size of the dataset, we believed that the resilience
to overfitting that characterize RF would have been a great advantage.

In order to assess in our intuition was likely to be true, we run the evaluations
on the same datasets with the same features, but using di�erent algorithms.

We chose Logistic Regression (LR) as an alternative pointwise approach
because it was successfully adopted in large-scale real-world QA scenarios [Fer-
rucci, 2011]. For pairwise approaches we chose RankSVM [Joachims, 2002] as
the algorithm to test against, as SVMs were shown to be e�ective on the same
Yahoo! Answers Manner Questions dataset [Surdeanu et al., 2011]. Finally, for
a listwise approach, we chose to test against ListNet [Cao et al., 2007]. All the
algorithms are used with their default parameters from the adopted libraries
(RankLib3 and SVMLight4), without a specific hyperparameter tuning.

LR RankSVM ListNet RF
Manner 0.6952 0.7683 0.7520 0.7922
Factual 0.7407 0.7774 0.7626 0.8059

Subjective 0.7183 0.7640 0.7411 0.7898
Discussion 0.6881 0.7256 0.7059 0.7508

Poll 0.7027 0.7286 0.7312 0.7644
All 0.7165 0.7491 0.7466 0.7798

Table 6.21: MRR scores obtained with di�erent Learning to Rank algorithms
on the Yahoo! Answers 2011 dataset.

The results in Table 6.21 show only the trends for MRR using all the fea-
tures, but the same trends are also present by changing the adopted feature set
combination and metric. Logistic Regression is the worst performing algorithm
on all the sets of questions, while among RankSVM and ListNet the di�erence
is really small with RankSVM obtaining slightly higher results on all question
sets but Poll. None of the alternative algorithms can reach the performance
levels reached by RF in any of the question sets, and this gives some empirical
evidence that our choice was reasonable.

3
http://sourceforge.net/p/lemur/wiki/RankLib/

4
http://svmlight.joachims.org

Experiments with Community Question Answering 81

6.7 Summary
We contribute to bring order to the vast literature on the task of best answer
selection by gathering the largest set of features considered for this task so far,
grouped in five families, combining them with a learning to rank approach, and
testing them on large datasets from Yahoo! Answers. We propose a new suite of
Distributional-Semantics-based features, in combination with the textual signal
and the information from several Expertise Networks. Besides being able to
outperform the prediction ability of state-of-the-art methods up to 27% in P@1,
our experiments allow us also to draw important conclusions about the impact of
di�erent features employed that have never been spell out in previous literature
due to a lack of extensive and systematic feature comparison. We summarize
our findings as follows.

• Textual features are by far the ones with higher predictive potential, com-
pared to user-centric features or to the expertise network centrality scores.
This is mainly due to the fact that the content of the question and answers
(their topic and structure) are a more important source of information to
determine the question-answering match rather than the expertise of the
answerers. Those features are to prefer when dealing with factual-type
questions.

• Among the textual features, Text Quality and Distributional Semantics
are in general to prefer to Linguistic Similarity. We indeed found that
Linguistic Similarity’s signal is mostly captured by other features already.
This is an important finding as Linguistic Similarity features have been
used in a number of previous approaches but are roughly 12 times more
computationally expensive than Distributional Semantics ones. This an-
swers RQ2.

• The new Distributional-Semantics-based approach we propose achieves sur-
prisingly good results considering the very small cardinality of its feature
set. This answers RQ1.

• User and network features determine a considerable improvement over
the textual-based features and their contribution is not completely over-
lapping, meaning that considering network interaction rather than the in-
dividual user activity adds real value to the prediction.

Part III

Applications

82

7

An Artificial Player for
“Who Wants to Be a
Millionaire?”

“Real stupidity beats artificial intelligence every time.”
– Terry Pratchett, Hogfather

In this chapter we describe one application of our semantically enhanced
QA framework to “Who Wants to Be a Millionaire?”, a quiz where language
understanding and wide knowledge are needed in order to play the game. We will
describe how we exploit QA for this task, how we actually make the system play
the game with all its specific rules. Finally, we will compare the performances
with a baseline based on Google and with human players.

7.1 Introduction
The work on intelligent computer games has a long history and has been one of
the most successful and visible results of Artificial Intelligence research [May-
bury et al., 2006]. Indeed, today artificial systems are able to compete and
sometimes challenge human players in several complex games. Most of these
games are closed world ones, meaning that they have a finite number of possible
choices, which allows the researchers to solve them formally, even though they
are hard to play due to the exponential dimensions of the search spaces. A
more challenging type of games is represented by open world games, such as
sport games or crosswords: they are less structured and, moreover, both the
states of the game and the actions of the player cannot be easily enumerated,
making the search through the space of possible solutions practically unfeasible.

83

An Artificial Player for “Who Wants to Be a Millionaire?” 84

One of the most recent results in this field was the success of Watson, the open-
domain question answering system built by IBM Research, which in February
2011 beat the two highest ranked players of the quiz show “Jeopardy!” [Ferrucci
et al., 2013, 2010].

We are particularly interested to games related to human language. They
are classified in word games, in which word meanings are not important, and
language games, in which word meanings play an important role [Littman, 2000].
Language games generally require a wide linguistic and common sense knowl-
edge. “Who Wants to Be a Millionaire?” (WWBM) is a perfect example of
a language game in which the player provides an answer to a question posed
in natural language by selecting the correct answer out of four possible ones.
Even though the number of possible answers is limited to four, being able to
successfully play this game heavily depends on the player’s knowledge, her un-
derstanding of the questions and her ability to balance the confidence in the
answer against the risk taken in answering.

This chapter describes the architecture of a Artificial Player for the WWBM
game, which leverages Question Answering (QA) techniques and both Wikipedia
and DBpedia [Bizer et al., 2009] open knowledge sources in order to incorporate
the knowledge useful for playing the game. A preliminary work that describes
the architecture of the artificial player is presented in [Molino et al., 2013a]. It
has been extended in the following directions: the use of DBpedia; the decision
making strategy integrated to manage the “lifelines” characterizing the game;
the possibility to retire from the game; the use of machine learning techniques
to improve the process of scoring the candidate answers to a question. Extended
related work about question answering, answer validation and language games
are also provided, along with more extensive experiments on both the Italian
and the English versions of the game.

Motivated by the challenge to develop an e�ective artificial player for the
WWBM game, in this chapter we address two research questions, RQ3 and
RQ4:

• RQ3. To what extent can a QA system be designed in a language-independent
way, by preserving its e�ectiveness?
We cope with this question by proposing a general architecture of a QA
and Answer Scoring (AS) framework which exploits resources or algo-
rithms specifically designed for a given language exclusively for basic NLP
operations, such as part-of-speech tagging or stemming. The QA frame-
work leverages Wikipedia and DBpedia open knowledge sources, while
the AS module supplies several criteria to score candidate answers and
to e�ectively combine scores through machine learning techniques. In or-
der to assess the e�ectiveness of the framework for at least two di�erent
languages, we performed experiments on English and Italian.

An Artificial Player for “Who Wants to Be a Millionaire?” 85

• RQ4. Is it possible to develop an artificial player for the WWBM game
able to outperform human players?
We address this question by comparing the accuracy of the human players
against that of an artificial player built using the QA and AS framework
in RQ1. We evaluate the ability of the artificial player to play the WWBM
game with all its rules, i.e. usage of “lifelines”, answering in a condition
of uncertainty, retiring from the game by taking the earned money.

The remaining of the chapter is organized as follows: Section 7.2 describes
the rules of the game, while related work in the areas of language games, QA over
linked data and answer validation are presented in Section 7.3. The architecture
of the artificial player, the details of the QA and AS modules, and the decision
making strategy adopted to play the game are provided in Sections 7.4-7.7. Sec-
tion 7.8 reports the results of an extensive evaluation performed on Italian and
English versions of the game, before drawing the final conclusions in Section 7.9.

7.2 Rules of the Game
WWBM is a language game, broadcast by many TV channels in several coun-
tries, in which a player must correctly answer a series of 15 multiple-choice
questions of increasing di�culty. Questions are posed in natural language and
the correct answer is selected among four possible choices.

Figure 7.1 shows an example of the question Who directed Blade Runner?,
and the four possible answers A) Harrison Ford B) Ridley Scott C) Philip
Dick D) James Cameron. There are no time limits to answer the questions.
Moreover, contestants read the question in advance, and then at any time they
can decide whether to attempt an answer or quit the game by keeping the earned
money. Each question has a certain monetary value (level 1:Ä500; level 2:Ä1,000;
level 3:Ä1,500; level 4:Ä2,000; level 5:Ä3,000; level 6:Ä5,000; level 7:Ä7,000; level
8:Ä10,000; level 9:Ä15,000; level 10:Ä20,000; level 11:Ä30,000; level 12:Ä70,000;
level 13:Ä150,000; level 14:Ä300,000; level 15:Ä1,000,000).

If the answer is correct, the player earns a certain amount of money and
continues to play by answering questions of increasing di�culty until either
she reaches the last question or she retires from the game by taking the earned
money. There are three guarantee points where the money is banked and cannot
be lost even if the player gives an incorrect answer to one of the next questions:
3,000, 20,000 and 1,000,000 Euros, corresponding to the milestone questions 5,
10, 15, respectively. At any point, the contestant may use one or more of three
“lifelines”, which provide her with some form of assistance:

• 50:50 : this lifeline removes two wrong answers, leaving the player with a
binary choice between the correct answer and the incorrect one;

An Artificial Player for “Who Wants to Be a Millionaire?” 86

�����

�����	
����������������
�

����

	������
�

����	�	���	��

���	��������

�� �!�����!�
��

Figure 7.1: An example of “Who Wants to Be a Millionaire?” question.

• Poll the Audience: the player asks the studio audience to pronounce about
the correct answer. The percentages of the audience for the 4 di�erent
answers are given to the player, who has the last word on the choice of
the answer;

• Phone a Friend: the player has 60 seconds to phone a friend, and read
the question with the four possible choices, in order to get a suggestion
about the right choice.

The amount of earned money and the lifelines vary from country to country.

7.3 Background
Here we provide some related work in the areas of language games, QA over
Linked Data and answer validation.

7.3.1 Language Games
Language games usually require a large amount of knowledge and deep reasoning
capabilities to compete at human level. Artificial players for language games
adopt Natural Language Processing (NLP) technologies in order to manage
the complexity and ambiguity of the language, while storing and manipulating
complex representations of the knowledge involved in the game.

A popular language game is solving crossword puzzles. Besides the linguistic
knowledge, solving crosswords requires the satisfaction of constraints over the
possible answers. The first experience reported in literature is Proverb [Littman
et al., 2002], that exploits large libraries of clues and solutions to past cross-
word puzzles, while WebCrow [Ernandes et al., 2005], the first solver for Italian
crosswords, exploits the Web as the main source of information, and a set of

An Artificial Player for “Who Wants to Be a Millionaire?” 87

previously solved games, as well. WebCrow is based on the sequential combina-
tion of “clue answering” and “grid filling”, a solution which is radically di�erent
from a human approach. In order to find the best candidate words, WebCrow
queries Google search engine with queries that are reformulations of the original
definitions obtained by enriching the morphological forms of the keywords (e.g.,
by varying number and gender for nouns, or the tense for verbs), by adding syn-
onyms and hypernyms from WordNet, in order to make the querying process
more e�ective. The text in the retrieved pages is analyzed by NLP techniques,
and a classifier chooses the most probable part-of-speech depending on the def-
inition in order to reduce the number of candidate words. Finally, a list of the
best words for the definition is given and they are matched against the letter
constraints given by the grid. WebCrow achieves 68.8% of correct words and
79.9% of correct letters, showing the potential of the Web as a resource for
complex language games.

Another interesting language game is the Guillotine, a game broadcast by the
Italian National TV company. It involves a single player, who is given a set of
five words (clues), each linked in some way to a specific word that represents the
unique solution of the game. Words are unrelated to each other, but each of them
is strongly related to the word representing the solution. For example, given the
five words sin, Newton, doctor, pie, New York, the solution is apple because:
the apple is the symbol of original sin in Christian theology; Newton discovered
the gravity by means of an apple; “an apple a day keeps the doctor away” is a
famous proverb; the apple pie is a fruit pie, and New York city is also called “the
big apple”. In [Semeraro et al., 2012], the authors present OTTHO (On the Tip
of my THOught), an artificial player for the Guillotine game. The idea behind
OTTHO is to define a knowledge infusion process which analyzes unstructured
information stored in open knowledge sources on the Web to create a memory
of linguistic competencies and world facts that can be e�ectively exploited by
the system for a deeper understanding of the information it deals with. The
knowledge infusion process adopts NLP techniques to build a knowledge base
and, similarly to the approach described in this chapter, extracts information
mainly from Wikipedia. A reasoning mechanism based on a spreading activation
algorithm is adopted to retrieve the most appropriate pieces of knowledge useful
to find possible solutions.

An approach to implement an artificial player for the “Who Wants to Be a
Millionaire?” game has already been proposed [Lam et al., 2003]. The authors
exploit the huge amount of knowledge in the Web and use NLP techniques
to reformulate the questions in order to create di�erent queries. The queries
are then sent to Google search engine and the number of results is used as a
ranking mechanism which exploits the redundancy of the information sources
[Lam et al., 2003]. A decision making module, that combines results in the spirit

An Artificial Player for “Who Wants to Be a Millionaire?” 88

of ensemble learning using an adaptive weighting scheme, tries to maximize the
earned amount of money with respect to the risk of answering. The system
reaches an accuracy of 75%, showing how unstructured data can be useful for
this kind of task, but it fails when questions require common sense reasoning
and access to structured information. The main di�erences with respect to our
work are that we adopt selected sources of information available on the Web,
such as Wikipedia and DBpedia, rather than the whole Web, in an attempt to
improve reliability of the answers; moreover, we adopt a QA framework instead
of a search engine in order to improve the process of selecting the most reliable
passages.

In February 2011 the IBM Watson supercomputer, adopting technology from
the DeepQA project [Ferrucci et al., 2010], has beaten two champions of the
Jeopardy! TV quiz. In Jeopardy! the player is given a question but expressed
as answer, and has to find the answer which must be expressed as a question.
Watson applies several NLP, Information Retrieval (IR) and Machine Learning
(ML) techniques focusing on open-domain QA, by answering questions with-
out domain constraints. Watson analyzed 200 millions content elements, both
structured and unstructured, including the full text of Wikipedia. The steps
of the Watson answering process can be summarized as follows: 1) it acquires
knowledge from di�erent data sources, namely encyclopedias, dictionaries, the-
sauri, journal chapters, databases, taxonomies and ontologies; 2) the input of
the problem is treated as a question, then it is analyzed using NLP algorithms
and lastly it is classified; 3) candidate answers are generated from the previously
acquired knowledge; 4) candidate answers that do not pass a threshold are fil-
tered out. Several scoring algorithms are used to rank the candidate answers in
order to give evidence of their quality. Lastly, the scoring criteria are combined
to select the final candidate answer. Similarly to the approach implemented in
Watson, we adopt QA techniques for solving the WWBM game, and we use the
same process of using di�erent scoring criteria, which are eventually combined
to return the best candidate answer.

7.3.2 Question Answering for Machine Reading and An-
swer Validation

QA systems generally deal with simple questions that require almost no in-
ference to find the correct answers, since no real understanding of documents
is performed. This historically led to QA architectures based on Information
Retrieval techniques, in which the final answers are obtained after focusing on
selected portions of retrieved documents and matching sentence fragments or
sentence parse trees. Other systems perform a deeper analysis of texts, to solve
tasks that involve some kind of reasoning. For example, in the Machine Read-
ing task [Peñas et al., 2013], the goal is to answer questions that require a deep

An Artificial Player for “Who Wants to Be a Millionaire?” 89

knowledge of individual short texts and in which systems are required to choose
one answer, by analyzing the corresponding test document in conjunction with
background text collections. Other complex tasks include Recognizing Textual
Entailment (RTE) [Dagan et al., 2005]1 and the Answer Validation Exercise
(AVE) [Rodrigo et al., 2008]2. In RTE, a system must decide whether the
meaning of a text T entails the meaning of a di�erent text H, i.e. the hypoth-
esis. Di�erently, AVE consists in deciding whether an answer to a question
is correct or not according to a given text. Systems receive a set of triplets
(question, answer and supporting text) and must return a value for each triplet,
which can be: validated, i.e. the answer is correct and supported, although
not selected, selected, i.e. the answer is validated and chosen as the output,
and rejected, i.e. the answer is incorrect or there is no enough evidence of
its correctness. In order to solve these tasks, several techniques were adopted,
mostly based on the use of lexical processing, syntactic processing, and Named
Entities [Rodrigo et al., 2007].

In [Breck et al., 2000] the answer validation is carried out by computing the
overlap between the system response to a question and the stemmed content
words of a human-generated answer key. The intuition behind this strategy
is that a good answer is expected to contain certain keywords, but the exact
phrasing does not matter. This is the reason why the authors used stopwords
removal and stemming. In [Magnini et al., 2002], the answer validation is based
on the intuition that the knowledge which connects an answer to a question
can be estimated by exploiting the redundancy of the Web information. More
specifically, the hypothesis is that the number of documents retrieved from the
Web in which the question and the answer co-occur is a good indicator of the
validity of the answer.

More complex strategies propose solutions to answer validation based on
a lightweight process of abduction starting from paragraphs of text where the
answers can be found [Harabagiu and Maiorano, 1999], or based on the use of
semantics. For example, Castillo [Castillo, 2008] builds a model using Support
Vector Machines to define whether the implication holds, using a set of lexical
and semantic measures to compute the similarity between (hypothesis, text)
pairs. Features are based on: 1) the overlap between text and hypothesis (com-
puted by taking into account single words or stems, bigrams and trigrams); 2)
the cosine similarity and the Levenshtein distance between the text and hypothe-
sis; 3) the semantic similarity using WordNet. Glöckner [2008] also used shallow
feature extraction (like lexical overlap) to validate answers. A local score is then
computed, and aggregation is used to determine a combined score for each an-
swer which captures the joint evidence of all snippets supporting the answer.

1
http://pascallin.ecs.soton.ac.uk/Challenges/RTE/

2
http://nlp.uned.es/clef-qa/ave/

An Artificial Player for “Who Wants to Be a Millionaire?” 90

Ahn et al. [2005] exploited semantic representations and inference techniques in
the process of answer extraction from selected passages. Candidate answers are
extracted using a “relaxed” unification method that takes advantage of Prolog
unification, which allows to assign high scores to perfect matches between terms
of the question and passage, and low scores for less perfect matches obtained
by relaxed unification. Less perfect matches are granted for di�erent semantic
types, predicates with di�erent argument order, or terms with symbols that are
semantically related (hypernymy) according to WordNet.

We were inspired by those previous approaches to build the artificial player
for the WWBM game, and we borrowed most of the techniques adopted in the
AVE task, such as techniques based on lexical processing and computation of
an approximate match between passages of text and candidate answers (Sec-
tion 7.6).

7.3.3 Question Answering over Linked Data
The rapid growth of semantic information published on the Web, in particu-
lar through the linked data initiative [Bizer, 2009], poses new challenges when
supporting users to query these large amounts of heterogeneous and structured
semantic data using natural language interfaces. This led to the rise of ontology-
based QA, a new paradigm able to exploit the expressive power of ontologies
and to go beyond the representation of user information needs as keyword-based
queries.

FREyA [Damljanovic et al., 2011] allows users to enter queries in any form.
In a first step, it generates a syntactic parse tree in order to identify the answer
type. The processing then starts with a lookup, annotating query terms with
ontology concepts using the ontology-based gazetteer OntoRoot. Next, on the
basis of the ontological mappings, triples are produced and finally combined to
generate a SPARQL query. In a similar way, PowerAqua [Lopez et al., 2012]
transforms the query into a set of triples Èsubject, property, objectÍ by
means of linguistic processing, and maps the triples to suitable semantic re-
sources in various ontologies that are likely to describe the query terms. Given
these semantic resources, a set of ontology triples that jointly cover the query
is derived and combined into a complete answer, by merging and ranking the
various interpretations produced in di�erent ontologies.

QAKiS [Cabrio et al., 2012] is a QA system over DBpedia that focuses on
bridging the gap between natural language expressions and labels of ontology
concepts by means of the WikiFramework repository. This repository has been
built by automatically extracting relational patterns from Wikipedia free text
that specify possible lexicalizations of properties in DBpedia. For example,
one of the natural language patterns that express the relation birthDate is
“was born on”. The approach of using a pattern repository represents a promis-

An Artificial Player for “Who Wants to Be a Millionaire?” 91

ing solution for bridging the lexical gap between natural language expressions
and ontology labels, which we also used in our work (Section 7.5.1). Similarly
to QAKiS, SemSek [Aggarwal and Buitelaar, 2012] also focuses on matching
natural language expressions to ontology concepts. This relies on three steps:
linguistic analysis, query annotation, and semantic similarity. The query anno-
tation mainly looks for the entities and classes in a DBpedia index that match
the expressions occurring in the natural language question. This process is
guided by the syntactic parse tree provided by the linguistic analysis. Starting
from the most plausible identified resources and classes, SemSek retrieves an
ordered list of terms following the dependency tree. In order to match these
terms to DBpedia concepts, SemSek uses two semantic similarity measures, one
based on Explicit Semantic Analysis [Gabrilovich and Markovitch, 2007], and
one based on WordNet.

In [Lopez et al., 2013], the evaluation of these systems in the context of the
challenges for question answering systems over linked data (QALD) is presented.
Results are encouraging and show that QA over linked data can deliver answers
to quite complex information needs expressed in natural language using hetero-
geneous semantic data, even though the task of mapping natural language to
formal queries is not trivial and still has several problems [Cimiano and Minock,
2009].

In Berant et al. [2013] the authors propose a semantic parser that maps
questions to answers via latent logical forms. They first generate a number
of logical forms exploiting a lexicon that maps logical predicates to phrases
built from a knowledge base and a large text corpus. They then calculate the
probability of each candidate logical form with a log.linear model that exploits
lexical and logical features, trained on question-answer pairs. This approach
di�ers from our because we rely mainly on lexical features for retrieving passages
rather than mapping questions to their logical form. At the same time we try
to map questions to DBpedia triples exploiting predicate lexicalization, which
has some commonalities with their lexicon construction step.

7.4 Artificial Player Architecture
The architecture of the artificial player for the WWBM game is presented in
Figure 7.2 and consists of four modules:

• Game Manager: manages the user interface, selects a question for each
level of the game, and logs the information about each game for the dif-
ferent players;

• Question Answering: leverages Wikipedia and DBpedia to retrieve
and rank the most relevant passages of text useful to identify the correct

An Artificial Player for “Who Wants to Be a Millionaire?” 92

GAME
MANAGER

QUESTION
ANSWERING

ANSWER
SCORING

DECISION
MAKING

Answer / Retire

Wikipedia DBpedia

Question and
candidate answers

Ranked list of
retrieved

passages / triples

Score for each
candidate answer

Level of the game
and lifelines

Figure 7.2: Artificial Player architecture.

answer to a question. More details are provided in Section 7.5;

• Answer Scoring: leverages the list of text passages extracted from the
Question Answering module and adopts several criteria to assign a
score to each of the four possible answers to a question. A detailed de-
scription is provided in Section 7.6;

• Decision Making: takes the final decision whether answering to a ques-
tion or retiring from the game by considering the current level of the game,
the available lifelines, and the score computed for each possible answer by
the Answer Scoring. A detailed description is provided in Section 7.7.

According to the current level of di�culty of the game, the Game Manager
selects a question along with the four possible answers, which are then passed
to the Question Answering module. This module exploits the knowledge
contained in Wikipedia and DBpedia to select a ranked list of passages of text
that likely contain the correct answer to the question. These passages are pro-
cessed by the Answer Scoring, which implements a set of heuristics to come
up with a score for each possible answer to the question. Finally, the Decision
Making module decides to provide a specific answer or to retire from the game,
by taking into account the scores of the candidate answers, the available lifelines
and the current level of the game.

In order to better explain the whole process of answer selection, we will
use the following running example throughout the chapter. Let us consider the
question in Figure 7.1: Who directed Blade Runner?, whose correct answer is
B) Ridley Scott. Let us also consider the ranked list of text passages provided

An Artificial Player for “Who Wants to Be a Millionaire?” 93

by the Question Answering module in Table 7.1. This example will be used
throughout the chapter.

Title (ti) Passage (pi) Score (wi)
Ridley Scott Sir Ridley Scott (born 30 November 1937) is

an English film director and producer. Follow-
ing his commercial breakthrough with Alien
(1979), his best-known works are the sci-fi
classic Blade Runner (1982) and the best pic-
ture Oscar-winner Gladiator (2000).

5.32

Blade Runner Blade Runner is a 1982 American dystopian
science fiction action film directed by Rid-
ley Scott and starring Harrison Ford, Rut-
ger Hauer, and Sean Young. The screenplay,
written by Hampton Fancher and David Peo-
ples, is loosely based on the novel Do Androids
Dream of Electric Sheep? by Philip K. Dick.

5.1

Blade Runner Director Ridley Scott and the film’s produc-
ers “spent months” meeting and discussing
the role with Dustin Ho�man, who eventually
departed over di�erences in vision. Harrison
Ford was ultimately chosen for several reasons.

5

Blade Runner The screenplay by Hampton Fancher was op-
tioned in 1977. Producer Michael Deeley be-
came interested in Fancher’s draft and con-
vinced director Ridley Scott to film it.

4.9

Blade Runner Interest in adapting Philip K. Dick’s novel Do
Androids Dream of Electric Sheep? developed
shortly after its 1968 publication. Director
Martin Scorsese was interested in filming the
novel, but never optioned it.

1.2

Table 7.1: List of passages returned by the Question Answering module for the
question “Who directed Blade Runner?”.

Each passage contains the title of the Wikipedia page from which it was ex-
tracted, and the score computed by the Question Answering module. More
formally, given Èq, (A, B, C, D)Í, where q is the question and (A, B, C, D) are
the four possible answers, the Question Answering module returns a list
of results Rq = {Èt

1

, p
1

, w
1

Í, . . . , Èt|Rq|, p|Rq|, w|Rq|Í} where the triple Èti, pi, wiÍ
corresponds to the title ti of the Wikipedia page containing the passage pi, and
wi is the score indicating the relevance of that passage with respect to the ques-

An Artificial Player for “Who Wants to Be a Millionaire?” 94

tion q. The list Rq is empty if the Question Answering module is not able
to find passages relevant to the question. This may happen when:

• the information is not contained in any of the adopted knowledge sources,
i.e. Wikipedia or DBpedia;

• the information is contained in one of the adopted knowledge sources, but
it is not possible to find a match (textual or semantic) between the question
and the passages containing the answer. For example, even though the
answer to the question When was Leonardo da Vinci born? is contained
in Wikipedia, it is di�cult to find it, since it is reported as “Leonardo
da Vinci (April 15, 1452 - May 2, 1519)”. We address this problem by
implementing a strategy based on the use of DBpedia (Section 7.5.1);

• the question falls into one of the categories which remain unanswerable by
our system (Section 7.8.1).

7.5 Question Answering
We configured the QA system described in Chapter 2 to work on Wikipedia.
We adopted all the NLP modules that where available for both English and
Italian , we used only the BM25 searcher with terms and lemmas because it was
the best performing one and adopted just the Overlap, Density, Other and
Distributional Semantics feature extractors, combined with the CombSum
strategy.

The configuration of the distributional semantics features is the same pre-
sented in Section 6.3.1, but the only adopted corpus for building the semantic
spaces was Wikipedia itself.

Moreover, we decided to try to exploit also structured information available
in the infoboxes of Wikipedia. In order to do so, we implemented a di�erent
candidate answer retrieval strategy from the passage retrieval one. We describe
it in the next Section 7.5.1.

7.5.1 Using DBpedia as Knowledge Source
The question When was Leonardo da Vinci born? shows the di�culty to extract
the correct answer, even though the information is contained in Wikipedia. In
this case, the date of birth is “April 15, 1452”, but it cannot be identified by
adopting the classical passage retrieval process implemented by the Question
Answering module. In order to manage this kind of questions, we used a
specific search engine which leverages the knowledge contained in DBpedia.
DBpedia includes structured information embedded in the Wikipedia chapters
– the “infobox”. Figure 7.3 reports the infobox for Leonardo da Vinci, which

An Artificial Player for “Who Wants to Be a Millionaire?” 95

contains a good deal of useful information, such as birth date, death date,
nationality, etc. DBpedia represents resources, properties as well as relations
between resources using RDF triples, which contain three components: subject,
predicate, and object. For example, the RDF triple that represents the birth
date of Leonardo da Vinci is:

È http://dbpedia.org/resource/Leonardo_da_Vinci,
dbpedia-owl:birthDate,

1452-04-15 Í
DBpedia allows querying relations and properties of Wikipedia resources,

thus the birth date of Leonardo da Vinci can be found by accessing the property
dbpedia-owl:birthDate.

In order to leverage the knowledge contained in DBpedia, we have manu-
ally created a mapping between the 50 most frequent DBpedia properties and
di�erent lexicalizations, in question form, asking for those specific properties.
For example, the property dbpedia-owl:birthDate is mapped to the questions
When was he born?, or What is the date of birth?, and other similar wordings. In
this way we have obtained two datasets containing 347 questions for Italian and
312 for English, where each question is tagged with the corresponding DBpedia
property. Each dataset is used to train a Rocchio classifier [Rocchio, 1971] that,
given a question, is able to predict the DBpedia property it is mapped to among
the 50 most frequent properties. The features used to train each classifier are all
the words occurring in the questions. Stopwords are not removed, since words
such as When, How, Where are useful hints to guide the classifier to the correct
classification.

In order to retrieve relevant information from DBpedia we queried an addi-
tional search engine containing documents which are the lexicalization of RDF
triples with the same subject in the form: Èlabel of the subject, label of the
predicate, label of the objectÍ (value of the object, in case of literals). The lexi-
calization for the previous example is: ÈLeonardo da Vinci, date of birth, 1452-
04-15Í. Only triples related to the 50 selected properties are lexicalized in that
way. Each document has an additional field reporting the DBpedia properties
it contains, such as dbpedia-owl:birthDate. When a query (question) is sent
to the DBpedia search engine, it is first classified using the Rocchio classifier in
order to identify the property it refers to; then, the selected property is added
to the query, along with the named entities (if any) occurring in the question.
The query is submitted to the search engine, which retrieves the set of docu-
ments relevant to the query. Starting from the documents, the system extracts
the corresponding list of passages (the RDF triples), which are scored using the
feature extractors described in Section 7.5, and an additional DBpedia property
filter. This filter scores the triples containing the property returned by the clas-
sifier with its confidence, and the triples not containing it with 0. It is worth

An Artificial Player for “Who Wants to Be a Millionaire?” 96

Figure 7.3: Leonardo da Vinci infobox.

to note that each question is always submitted to both search engines working
on Wikipedia and DBpedia, in order to retrieve results from both knowledge
sources.

7.6 Answer Scoring
The main goal of the Answer Scoring module is to assign a score to each of
the four possible answers to a question. Similarly to the approaches used in the
context of the Answer Validation Exercise [Rodrigo et al., 2008], we adopted five
criteria based on the analysis of the passages returned by the Question An-

An Artificial Player for “Who Wants to Be a Millionaire?” 97

swering module. Each criterion returns a score for each possible answer, which
is normalized using the sum of the scores of the four possible answers. More
formally, given Èq, (A, B, C, D)Í, each criterion computes Èq, (cA, cB , cC , cD)Í,
where cX is the score assigned to the candidate answer X. In the following,
each criterion is described by taking into account our running example.

Title Levenshtein (TL) criterion. This criterion computes the Leven-
shtein distance between a candidate answer X and the title ti of the Wikipedia
page returned by the Question Answering module. The Levenshtein distance
measures the di�erence between two strings, and is defined as the minimum
number of single-character edits (i.e. insertion, deletion, substitution) required
to change one string into the other. As the Levenshtein distance is a distance
measure, rather than a similarity measure, we compute:

max(len(X), len(ti)) ≠ lev(X, ti)
max(len(X), len(ti))

where len(·) is the function computing the length of the string, and lev(X, ti)
is the Levenshtein distance between X and ti, used as a normalization factor
(to have scores in the [0, 1] interval). In our running example, taking into
account just the first passage returned by the Question Answering module
(Table 7.1), the answer B) Ridley Scott occurs in the title of the page containing
the passage, so it gets the maximum score of 1, while the answer A) Harrison
Ford gets a score equal to 13≠12

13

= 0.077, the answer C) Philip Dick gets a score
equal to 12≠10

12

= 0.167, and the answer D) James Cameron gets a score equal
to 13≠12

13

= 0.077. The normalized score of each answer is:

cA = 0.077

0.077+1+0.167+0.077

= 0.058

cB = 1

0.077+1+0.167+0.077

= 0.757

cC = 0.167

0.077+1+0.167+0.077

= 0.126

cD = 0.077

0.077+1+0.167+0.077

= 0.058

Longest Common Subsequence (LCS) criterion. This criterion com-
putes the Longest Common Subsequence between a candidate answer X and a
passage of text pi returned by the Question Answering module, or just the
title ti of the Wikipedia page the passage pi is extracted from. In our running
example, taking into account only the second passage, the answer A) Harrison
Ford gets a score equal to 13, the answer B) Ridley Scott gets a score equal
to 12, the answer C) Philip Dick gets a score equal to 11, and the answer D)
James Cameron gets a score equal to 0 since it does not occur in the passage.
The normalized score of each answer is:

cA = 13

13+12+11+0

= 0.361

An Artificial Player for “Who Wants to Be a Millionaire?” 98

cB = 12

13+12+11+0

= 0.333

cC = 11

13+12+11+0

= 0.305

cD = 0

13+12+11+0

= 0

Overlap criterion. This criterion computes the Jaccard index between the
set of terms in a candidate answer X and the set of terms in a passage of text pi

returned by the Question Answering module. The Jaccard index measures
the similarity between sets, and is defined as the size of the intersection divided
by the size of the union of the sets. In our running example, taking into account
only the second passage, answers A), B) and C) get a score of 2

49

= 0.041, while
the answer D) gets a score equal to 0. The normalized score of each answer is:

cA = cB = cC = 0.041

0.041+0.041+0.041+0

= 0.333

cD = 0

0.041+0.041+0.041+0

= 0

Exact Substring (ES) criterion. This criterion computes the length in
characters of the longest common substring between a candidate answer X and
a passage of text pi returned by the Question Answering module, normal-
ized using the length of the candidate answer. In our running example, taking
into account only the second passage returned by the Question Answering
module, the answer A) Harrison Ford gets a score of 13

13

= 1, the answer B)
Ridley Scott gets a score of 12

12

= 1, the answer C) Philip Dick gets a score of
6

11

= 0.55, and the answer D) James Cameron gets a score equal to 0. The
normalized score of each answer is:

cA = 1

1+1+0.55+0

= 0.392

cB = 1

1+1+0.55+0

= 0.392

cC = 0.55

1+1+0.55+0

= 0.215

cD = 0

1+1+0.55+0

= 0

Density criterion. This criterion computes the density of the terms in a
candidate answer X inside a passage of text pi returned by the Question An-
swering module, using the minimal overlapping span method [Monz, 2004]
modified as described in Section 2.3.3 and Section 6.3.1. In our running ex-
ample, taking into account only the second passage returned by the Question
Answering module, the answers A) and B) get a score equal to 1, the answer
C) gets a score equal to 2

3

= 0.66 (as the passage reports the full name Philip K.
Dick, adding an extra token between the two tokens of the candidate answer),
and the answer D) gets 0. The normalized score of each answer is:

cA = 1

1+1+0.66+0

= 0.376

An Artificial Player for “Who Wants to Be a Millionaire?” 99

cB = 1

1+1+0.66+0

= 0.376

cC = 0.66

1+1+0.66+0

= 0.248

cD = 0

1+1+0.66+0

= 0

Each criterion has some parameters that can be set:

1. number of processed passages: in this case the score of each answer is
computed for each of the top-n passages returned by the Question An-
swering module, and the final score is the average of those values;

2. use of the weight wi of the passages returned by the Question Answer-
ing module: in this case the average computed at the previous point is
weighted using the score wi of each passage. This strategy allows to assign
higher weights to passages deemed as more relevant to the question by the
Question Answering module;

3. level of linguistic analysis to adopt for processing the passages returned
by the Question Answering module. Passages are represented by using
keywords, lemmas, or stems, with or without stopword removal;

4. use of the question expansion: the system asks four di�erent questions
obtained by concatenating the original one with each of the four possible
candidate answers. In our running example, the artificial player queries
the Question Answering module using the following questions Who di-
rected Blade Runner? Harrison Ford, Who directed Blade Runner? Ridley
Scott, Who directed Blade Runner? Philip Dick and Who directed Blade
Runner? James Cameron. If a criterion adopts the question expansion,
it uses four di�erent sets of passages (one for each question), instead of
using the same set of passages.

Besides the above mentioned criteria for Answer Scoring, the distribu-
tional filter (Section 7.5) could be also adopted for comparing answers against
the retrieved passages. We finally decided to avoid using that filter because,
after the selection of the most relevant passages to a specific question, we ex-
pect that the candidate answer is already contained in one of the passages, and
the answer scoring criteria based on pure lexical comparison are su�cient to
properly select and score it. Moreover, the answers usually contain one or two
words, and most of them are named entities, numbers, or dates, which could be
hardly identified by a distributional filter.

It is worth to mention how we managed a specific type of questions, i.e.
those formulated in negative form, such as Quale di questi super-criminali non
è uno storico nemico di Batman? (in English Which of these villains is not
a historical enemy of Batman?). Let us suppose that the candidate answers

An Artificial Player for “Who Wants to Be a Millionaire?” 100

are Dottor Destino (Doctor Doom), Mister Freeze, Pinguino (Penguin), and
Joker. The Question Answering module returned passages containing Joker,
Pinguino, and Mister Freeze, that would be correct if the question was raised
in positive form. In fact, when the question is raised in negative form, the
top-ranked passages often contain the candidate answers that are actually those
to be discarded. For this reason, when the system detects a negative question,
the strategy for scoring the candidate answers is reversed, meaning that those
with the highest score become the less plausible and vice versa. The process of
detecting questions raised in negative form leverages several heuristics based on
the use of regular expressions.

7.7 Decision Making
The Decision Making module is responsible for the decision about answering
to a specific question, retiring from the game or using one of the available
lifelines. The decision strategy evaluates the uncertainty of the information
provided by the Question Answering module and the Answer Scoring,
the available lifelines, and the level of the question in order to take the final
decision. The decision making strategy we devised encapsulates two heuristics
to manage the following situations of uncertainty:

1. the maximum score computed by the Answer Scoring for the four can-
didate answers is very low. This means that either the quality of the
passages retrieved by the Question Answering module may be low,
hence those passages are not useful to find the correct answer to the ques-
tion, or the criteria adopted by the Answer Scoring for assigning a
score to the candidate answers are not satisfactory;

2. the di�erence between the score of the best candidate answer and the
second best candidate answer is very small. This means that the artificial
player is not able to provide clear evidence of the most likely candidate
answer between the two candidate answers.

In a situation in which the artificial player has enough confidence in one of
the candidate answers, it can answer the question without using any lifeline. In
a situation of uncertainty, the decision making algorithm can take one of the
following decisions: 1) to retire from the game; 2) to use one or more available
lifelines; 3) to continue to play by providing a random answer. The random
strategy can be also useful in some situations, in particular at specific levels
of the game (6th or 11th question) when a wrong answer causes no loss in the
earned amount.

The decision making algorithm implements a simple strategy for managing
the lifelines, meaning that the order of their usage is independent of the level of

An Artificial Player for “Who Wants to Be a Millionaire?” 101

the current question. The system leverages first the Poll the Audience lifeline
and, if it does not return a candidate answer with a good confidence, the Phone
a Friend is explored, and finally 50:50. Other authors faced the problem of
defining a more dynamic decision making strategy for the WWBM game. In
[Lam et al., 2003], the decision making module constructs a decision tree that
encodes the probabilities and utilities at each potential future state of the game.
The tree consists of both decision forks for choosing whether to answer the
question, to use a lifeline, or to walk away, and chance forks to encode the
uncertainty of correctly answering the questions. The best choice is obtained
with the action that maximizes the expected utility. The strategy is able to
parameterize the risk of the artificial player, which can exhibit a risk averse
behavior or a more risk neutral one. Probabilities are assigned to the nodes of
the tree based on historical past performance on a sample of questions from the
associated di�culty level. A di�erent strategy based on dynamic programming
is adopted in [Perea and Puerto, 2007] to analyze two di�erent objectives: 1)
to maximize the expected reward, 2) to maximize the probability of reaching
a given question. An analysis of the results presented in that work allowed us
to define the order in which our decision making module should check and use
the available lifelines. More specifically, we found out that Poll the Audience
must be checked before the others, while no specific indications are provided for
50:50 and Phone a Friend.

The functions used by our decision making algorithm (Algorithm 2) are the
following:

• Best(Answers) and SecondBest(Answers) return the best and sec-
ond best candidate answer to a question q, respectively;

• CanUse(lifeline) returns true if that specific lifeline has not yet been
used in the current game, otherwise it returns false;

• Use(lifeline) returns a new set of answers together with their scores
obtained by adopting that specific lifeline;

• CanRisk() returns true if the current question allows the player to pro-
vide a wrong answer without losing the earned money (6th or 11th ques-
tion), otherwise it returns false;

• Random(Answers) allows the artificial player to provide a random an-
swer to a question;

• Retire() allows the artificial player to retire and win the earned money.

The artificial player uses no lifelines if it has enough confidence in one of
the four answers (if statement at step 4). In this case the provided answer is
the one with the highest score (step 33). If the artificial player is in a situation

An Artificial Player for “Who Wants to Be a Millionaire?” 102

of uncertainty, it explores the available lifelines starting by Poll the Audience
(steps 5-11). If the player has enough confidence in the answer provided by
that lifeline (step 8), it returns that answer (step 9), otherwise it continues to
explore the other available lifelines. Steps 12-18 manage the Phone a Friend
lifeline, which allows returning the answer possibly provided by a friend (step
16). The usage of the 50:50 lifeline is related to the level of the game reached
by the player. If the user can risk, meaning that the money would not be lost
even providing a wrong answer to the question (step 19), the player uses the
50:50 lifeline (step 20). The player chooses the answer with the highest score
(step 23) if that value is higher than a certain threshold, otherwise it randomly
returns one of the two remaining answers (step 25). If the player cannot rely
on lifelines, or it does not have enough confidence in the answers provided by
lifelines, then it returns a randomly chosen answer in case the user can risk
(steps 28-30), otherwise it retires from the game (step 31).

Given that the game is played using a board game variant, we implemented
a specific strategy to simulate the actual way of using lifelines, as their use in the
board game implies the interaction with the other players. 50:50 is simulated
in the same way as in the real game, i.e. by removing two wrong answers among
the four candidate answers. As in the real game, Phone a Friend and Poll the
Audience lifelines are not always able to return the correct answer. As regards
Phone a Friend, it is worth to notice that usually the higher the level of the
game, the more di�cult is to answer to the question. Hence, this lifeline works
as follows: it always returns the correct answer when used for levels from 1
to 5; it randomly chooses between two alternatives, i.e. providing the correct
answer or not returning the answer at all, when used for levels from 6 to 10; it
randomly chooses between three alternatives, i.e. providing the correct answer,
not returning the answer at all or returning the wrong answer, when used for
levels from 11 to 15. On the other side, Poll the Audience is simulated in
order to distribute the votes coming from the audience (in percentage) among
the candidate answers. Without a real audience, we simulated the distribution
of votes using a strategy which takes into account both the current level of
the question and a degree of randomness. We first assign a percentage of all
votes to the correct answer, representing the percentage of the audience that
would know the correct answer, then we randomly distribute the remaining
votes among the other candidate answers. The percentage of votes assigned to
the correct answer – baseline – is inversely proportional to level of the game,
i.e. the more di�cult the question, the lower the confidence; then, the baseline
percentage fo votes is randomly perturbed according to the level of the game,
between the lower and upper bound depicted in Figure 7.4. It is worth noting
that the perturbation of the baseline percentage is di�erent for questions whose
level is between 1 and 5, 6 and 10, 11 and 15. For example, if the player uses

An Artificial Player for “Who Wants to Be a Millionaire?” 103

Algorithm 2 Decision making algorithm
1: procedure Decision Making(< q, (cA, cB , cC , cD) >, lifelines) Û

Decision strategy based on the scores of the four candidate answers for question q, and

the available lifelines

2: BestAnswer Ω Best(< q, (cA, cB , cC , cD) >)

3: SecondBestAnswer Ω SecondBest(< q, (cA, cB , cC , cD) >)

4: if BestAnswer.score < threshold1
or (BestAnswer.score ≠ SecondBestAnswer.score)

< (BestAnswer.score ú threshold2) then

5: if CanUse(Poll the Audience) then

6: audienceAnswers Ω Use(Poll the Audience)

7: lifelines Ω lifelines ≠ {Poll the Audience}
8: if audienceAnswers.score > threshold1 then

9: Return Best(audienceAnswers)

10: end if

11: end if

12: if CanUse(Phone a Friend) then

13: friendAnswer Ω Use(Phone a Friend)

14: lifelines Ω lifelines ≠ {Phone a Friend}
15: if friendAnswer ”= null then

16: Return friendAnswer

17: end if

18: end if

19: if (CanUse(50:50) and CanRisk()) then

20: 50 : 50answers Ω Use(50:50)

21: lifelines Ω lifelines ≠ {50:50}
22: if 50 : 50answers.score > threshold1 then

23: Return Best(50:50answers)

24: else

25: Return Random(50:50answers)

26: end if

27: end if

28: if CanRisk() then

29: Return Random(answers) Û No more lifelines but the player can risk

30: end if

31: Retire()

32: else

33: Return BestAnswer

34: end if

35: end procedure

An Artificial Player for “Who Wants to Be a Millionaire?” 104

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%
 o

f a
ud

ie
nc

e
vo

tin
g

fo
r t

he
 c

or
re

ct
 a

ns
w

er

Level of the game

Simulation of Poll the Audience lifeline

Lower bound Baseline score Upper bound

Figure 7.4: Variability of the score assigned to the correct answer when Poll the
Audience lifeline is used.

Poll the Audience at level 3, the baseline percentage is equal to 54%, and it is
randomly perturbed between 49% and 74%; the remaining votes (between 51%
and 26%) are randomly distributed among the remaining answers; if the lifeline
is used at level 14, the baseline percentage is 32% and it is randomly perturbed
between 22% and 37%, and the remaining votes (between 78% and 63%) are
randomly distributed among the remaining answers.

7.8 Experimental Evaluation
The goal of the evaluation is twofold:

1. to assess the e�ectiveness of the Question Answering and Answer
Scoring modules to answer to questions of the game, and compare the
results with those obtained by human players. The experiment is discussed
in Section 7.8.1;

2. to evaluate the accuracy of the artificial player to play the game, taking
also into account the strategy implemented by the Decision Making
module, and to compare the results with those obtained by human players.
The experiment is discussed in Section 7.8.2.

We used two datasets: one containing questions from the WWBM o�cial
Italian board game, and one containing questions from the English board game3.

3
Datasets available upon request

An Artificial Player for “Who Wants to Be a Millionaire?” 105

0%

2%

4%

6%

8%

10%

12%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Tot.

%
 n

eg
at

iv
e

qu
es

tio
ns

Level of the game

Distribution of negative questions

Italian dataset English dataset

Figure 7.5: Distribution of negative questions per level of the game.

Both datasets contain 1,960 questions, subdivided in 15 groups, one for each
level of the game. The first 10 levels contain 160 questions each, while levels
11, 12, 13, 14 and 15 contain 120, 90, 70, 50 and 30 questions, respectively. 113
questions for Italian, and 84 for English are in negative form. The distribution
of negative questions per level of the game is reported in Figure 7.5.

While previous results to compare with are available for the English version
of the game (even though not on the same dataset), we are not aware of previous
results for Italian, i.e. we do not have any baseline to compare with. The metric
adopted for the evaluation is the accuracy, i.e. the proportion of correctly an-
swered questions, computed as the ratio between the number of correct answers
(nc) and the total number of questions (n): accuracy = nc

n . The significance of
the results is assessed using the McNemar’s test with Bonferroni correction.

7.8.1 Experiment 1: Evaluation of the Performance of QA
and Answer Scoring

The goal of this experiment is to assess the accuracy of the five criteria for an-
swer scoring, properly configured using the parameters described in Section 7.6,
namely:

• number of processed passages: we tested 10 configurations, by using the
top-n, n = 1, 2, 3, 4, 5, 10, 15, 20, 25, 30 passages returned by the QA mod-
ule;

• use of the score wi for the passages returned by the QA module: we tested
2 configurations, using and not using the weight for each passage returned

An Artificial Player for “Who Wants to Be a Millionaire?” 106

by the QA module;

• level of linguistic analysis adopted to process the passages returned by the
QA module: we tested 3 configurations, which represent passages using
keywords, stems, or lemmas. We also run 2 further configurations, using
and not using stopwords removal.

• use of question expansion: we tested 2 configurations, with and without
question expansion.

Overall, we have a set of 1,200 di�erent configurations used to assign a
score to each of the four possible answers to a question of the game: starting
from these scores, the answer with the highest one is selected. The Question
Answering system was configured as described in Section 7.5.

Table 7.2 and Table 7.3 report the accuracy of the best 15 configurations,
averaged over the whole set of 1,960 questions of the Italian and English datasets.

Rank Criterion P Lex S SW QE Accuracy
1 Overlap 25 ST Y Y N 64.29%
2 Overlap 25 LEM Y Y N 64.29%
3 Density 3 KWD Y N Y 64.03%
4 Density 30 ST Y Y N 64.03%
5 Density 30 LEM Y Y N 64.03%
6 Overlap 20 ST Y Y N 63.78%
7 Overlap 20 LEM Y Y N 63.78%
8 Overlap 30 ST Y Y N 63.78%
9 Overlap 30 LEM Y Y N 63.78%
10 Density 20 ST Y Y N 63.27%
11 Density 20 LEM Y Y N 63.27%
12 Density 25 KWD Y Y N 63.01%
13 Overlap 15 ST Y Y N 62.76%
14 Overlap 15 LEM Y Y N 62.76%
15 Overlap 20 ST N Y N 62.76%

Table 7.2: Performance of the top-15 configurations (averaged over all the ques-
tions) on the Italian dataset.

Acronyms: P # of passages, Lex Lexicalization, KWD Keywords, LEM Lem-
mas, ST Stems, S Use of the score of the passage, SW use of stopword removal,
QE Use of the question expansion.

It is worth to note that Overlap and Density are the best performing criteria
for both the Italian and the English datasets (the top-85 best configurations are

An Artificial Player for “Who Wants to Be a Millionaire?” 107

Rank Criterion P Lex S SW QE Accuracy
1 Overlap 25 LEM Y Y N 59.47%
2 Overlap 25 ST Y Y N 59.38%
3 Density 3 KWD Y N Y 59.26%
4 Overlap 20 ST Y Y N 59.22%
5 Density 30 ST Y Y N 59.08%
6 Density 30 LEM Y Y N 59.08%
7 Overlap 30 ST Y Y N 58.99%
8 Density 20 ST Y Y N 58.84%
9 Overlap 15 LEM Y Y N 58.72%
10 Density 25 KWD Y Y N 58.37%
11 Overlap 30 LEM Y Y N 58.35%
12 Density 20 LEM Y Y N 58.21%
13 Overlap 20 LEM Y Y N 58.14%
14 Overlap 20 ST N Y N 57.99%
15 Overlap 15 ST Y Y N 57.97%

Table 7.3: Performance of the top-15 configurations (averaged over all the ques-
tions) on the English dataset.

Acronyms: P # of passages, Lex Lexicalization, KWD Keywords, LEM Lem-
mas, ST Stems, S Use of the score of the passage, SW use of stopword removal,
QE Use of the question expansion.

obtained using those criteria). The analysis of the results unveils the useful-
ness of taking into account a considerable number of passages, the usefulness
of leveraging the score of the passages returned by the QA module, and the
e�ectiveness of the process of stopwords removal. Finally, the question expan-
sion process seems to negatively a�ect the accuracy of the system. The worst
criterion is Title Levenshtein for both Italian and English: indeed, the worst
100 results are obtained by that criterion.

In order to have a clear picture of the accuracy of the whole set of config-
urations, Table 7.4 and Table 7.5 report, for each criterion, its best and worst
configuration.

We observe that the best and worst configurations of each criterion for Italian
and English are pretty much the same, even though the accuracy obtained on the
English dataset is 5% lower than that obtained for Italian, on average. Statisti-
cal tests show that there is no significan di�erence among the best configuration
of the overlap criterion and the best configuration of the density criterion, but
both their improvements are statistically significant (p < 0.01) with respect to
the best configurations of other criteria, regardless of the language.

Starting from the accuracy of the single configurations, we tried to combine

An Artificial Player for “Who Wants to Be a Millionaire?” 108

Rank Criterion P Lex S SW QE Accuracy
BEST Overlap 25 ST Y Y N 64.29%

WORST Overlap 1 KWD Y N N 42.60%
BEST Density 3 KWD Y N Y 64.03%

WORST Density 1 LEM N N N 43.37%
BEST ES 30 KWD Y Y N 59.18%

WORST ES 1 KWD Y N N 42.09%
BEST LCS 3 KWD Y N Y 57.14%

WORST LCS 1 LEM Y Y N 41.07%
BEST TL 1 KWD Y Y Y 40.05%

WORST TL 1 LEM Y N N 20.15%

Table 7.4: Best and worst performance of each single criterion along with its
configuration (averaged over all the questions) for Italian.

Acronyms P # of passages, Lex lexicalization, S Use of the score of the pas-
sage, SW use of stopword removal, QE Use of the query expansion, ES Exact
Substring, LCS Longest Common Subsequence, TL Title Levenshtein, KWD
Keywords, LEM Lemmas, ST Stems.

Rank Criterion P Lex S SW QE Accuracy
BEST Overlap 25 LEM Y Y N 59.47%

WORST Overlap 1 KWD Y N N 37.74%
BEST Density 3 KWD Y N Y 59.26%

WORST Density 1 ST Y N N 38.58%
BEST ES 30 KWD Y Y N 54.62%

WORST ES 1 KWD Y N N 37.46%
BEST LCS 3 KWD Y N Y 52.19%

WORST LCS 1 LEM Y Y N 36.04%
BEST TL 1 KWD Y Y Y 35.17%

WORST TL 1 LEM N N N 15.12%

Table 7.5: Best and worst performance of each single criterion along with its
configuration (averaged over all the questions) for English.

Acronyms P # of passages, Lex lexicalization, S Use of the score of the pas-
sage, SW use of stopword removal, QE Use of the query expansion, ES Exact
Substring, LCS Longest Common Subsequence, TL Title Levenshtein, KWD
Keywords, LEM Lemmas, ST Stems.

them in order to improve the overall accuracy of the Answer Scoring. In
[Molino et al., 2013a], we carried out a greedy combination: we started with the

An Artificial Player for “Who Wants to Be a Millionaire?” 109

best performing configuration and we iterate by greedily adding one configura-
tion at a time by selecting exclusively those that provided an improvement in
terms of accuracy.

In this work we propose a combination based on a pointwise learning to
rank approach using regression-based algorithms [Liu, 2011], in which question-
answer pairs (q, a) are labeled with the relevance judgments of the answer a with
respect to the question q. In our setting, the correct answer to a question of the
game is labeled with the relevance judgment 1, while the other three incorrect
answers are labeled with 0. Each training example is represented using a feature
vector consisting of the level of the question (from 1 to 15), and all the 1,200
single scores obtained by the above mentioned configurations. We opted for
using Random Forests (RF) [Breiman, 2001] algorithm, an ensemble learning
method, combining di�erent tree regressors built using di�erent samples of the
training data and random subsets of data features that we already described in
Section 4.4. The final result is obtained by averaging the output of the single
trees. The use of di�erent data samples from the same distribution and of
di�erent feature sets for learning the individual trees prevent overfitting. We
adopted the implementation provided by the RankLib library4.

Questions in each dataset are split into a training set Tr, and a test set Ts.
The methodology adopted for obtaining Tr and Ts was the stratified 5-fold cross
validation, where the stratification process ensures each fold contains the same
distribution of questions for the di�erent levels of the game. Given the size of
each dataset (1,960 questions), applying 5-fold cross validation means that the
dataset is divided into 5 disjoint partitions, each containing 392 questions. The
experiment was performed in 5 steps. At each step, 4 partitions were used as
training set Tr (1,568 questions), whereas the remaining partition was used as
test set Ts. The steps were repeated until each of the 5 disjoint partitions was
used as the Ts, and results were averaged over the 5 runs. In order to tune the
parameters of the learning to rank (number of trees, learning rate, subsampling
rate), we also used a validation set, obtained by sampling questions from the
training set of each run. We sampled 12.5% of the training set (196 questions),
and even in this case we took into account the distribution of the questions
among the di�erent levels (stratification). To sum up, at each step, the training
set contains 1,372 questions, the validation set contains 196 questions, and the
remaining 392 questions are used as test set. The final accuracy obtained by
combining all the individual configurations through the learning to rank strategy
is equal to 79.64% for Italian, and 76.41% for English (averaged over the five
runs), which is significantly better (p << 0.0001) than the accuracy of the
best single configuration (64.29% for Italian, 59.47% for English). The result
obtained for English is similar to that achieved in [Lam et al., 2003], in which

4
http://sourceforge.net/p/lemur/wiki/RankLib/

An Artificial Player for “Who Wants to Be a Millionaire?” 110

the system correctly answered about 75% of questions, even though a di�erent
and smaller dataset was used. More details about the accuracy for each di�erent
level of di�culty of the game is presented and discussed in Section 7.8.1.

Unanswerable Questions and Error Analysis

In order to understand the questions for which the system is not able to provide
a correct answer, we classified them in specific categories, and we performed a
proper error analysis. The following list contains categories of questions which
remain unanswerable by our system:

• Questions regarding concepts not occurring in Wikipedia / DBpedia: some
of these questions concern astrology, proverbs and sayings, and religion.

• Questions regarding concepts which are not explicit in Wikipedia / DB-
pedia: the system may not be able to provide an answer to some ques-
tions, even though the necessary information is contained in the knowl-
edge sources. For example, the question Quale di questi attori non è figlio
d’arte? (in English Which of these actors is not an actor son of an actor
father?) would require to match the concept figlio d’arte (actor son of an
actor father), which is not explicit in Wikipedia / DBpedia.

• Questions whose answers involve special numbers, periods of time, and
mathematical computations: the system fails to provide an answer when
it contains Roman numerals, or it implies the computation of time frames,
or some mathematical computations. For example, the candidate answers
to the question In quale secolo fu costruita la prima penna a sfera? (in
English In what century was the first ballpoint pen built?) are A) XX B)
XVII C) XVIII D) XIX, but the system is not able to find a match with any
of the candidate answers; the question How long was William Harrison in
o�ce as the ninth president of USA? involves the computation of a time
frame which the system is not able to carry out; the question How many
degrees are each of the other two angles in an isosceles triangle, if one
angle is 120¶? requires that the system knows that the total of all angles
in any Euclidean triangle would sum to 180¶.

• Questions that require language proficiency: questions such as Nella lingua
latina, il vocativo plurale è sempre uguale a che cosa? (in English In
Latin, the vocative plural is always equal to what?), would require a specific
knowledge which is not encoded in Wikipedia / DBpedia.

• Questions that require making a comparison: questions such as Quale tra
queste regioni italiane ha la superficie minore? (in English Which of these
regions of Italy has the lowest surface?) would require to make a compar-
ison and the selection of the minimum value.

An Artificial Player for “Who Wants to Be a Millionaire?” 111

• Questions that require knowledge of visual properties: questions such as
Quale di queste squadre di calcio non ha come simbolo un esemplare di
lupo? (Which of these football teams does not have a wolf as symbol?)
would require the knowledge of visual properties.

The error analysis carried out on the results of the experiments in the pre-
vious section unveils that for both Italian and English about 13% of errors are
due to the lack of information in Wikipedia / DBpedia, about 57% concerns:
1) questions whose concepts are not explicit in Wikipedia / DBpedia (15%);
2) questions which involve numbers, time and math (13%); 3) questions which
require language proficiency (14%); 4) questions which require to make a com-
parison (7.50%); 5) questions which require knowledge about visual properties
(7.50%). The remaining 30% concerns errors due to the wrong scoring of an-
swers or due to other factors, such as the heuristics to recognize and manage
negative questions (Section 7.6).

Hence, in order to evaluate how much e�ective that strategy is, we have
evaluated on one hand the accuracy of regular expressions at correctly detecting
negative questions, and on the other hand the e�ectiveness of the reverse scoring
method. The accuracy of the heuristics based on the use of regular expressions is
F1 = 89.23% for the Italian dataset, and F1 = 98.20% for the English one, while
the reverse scoring method was evaluated by taking into account the percentage
of negative questions for which the reverse scoring strategy was useful (i.e. the
answer with the lowest score was correct), harmful (i.e. the answer with the
lowest score was wrong) or indi�erent (i.e. the correct answer is neither the one
with the highest score nor the one with the lowest score): for the Italian dataset
percentages are 80%, 9%, and 11%, respectively, while for the English dataset
percentages are 96%, 1%, and 3%, respectively. This means that the reverse
scoring method is e�ective in practice.

Finally, in order to have some details about the DBpedia benefit, we have
computed the number of questions for which the QA module returned passages
coming from DBpedia. 290 questions for the Italian dataset, and 293 for the
English one rely on passages coming from DBpedia (besides those coming from
Wikipedia), and this means that the answer for those questions could potentially
be extracted from DBpedia. For the sake of completeness we have also evaluated
the accuracy of the Rocchio classifier described in Section 7.5.1, which allows
mapping di�erent lexicalizations of questions asking for a specific property to
the corresponding DBpedia property. The accuracy of the classifier, computed
using leave-one-out is 85.59% for the English dataset, and 83.57% for the Italian
one.

An Artificial Player for “Who Wants to Be a Millionaire?” 112

Ablation Tests

To gain insights about the power of the di�erent parameters used to configure
each answer scoring criterion, we performed feature selection using ablation
tests, by removing single features or groups of features.

As regards the ablation of single features, we trained a di�erent model by
removing each feature related to each single configuration, and measuring the
corresponding predictive accuracy of the learning to rank model (i.e. the process
is repeated 1,200 times). The analysis of results unveils that only 160 out of
1,200 times the accuracy of the learned models is lower than that obtained
by the best configuration, regardless of the language adopted. The maximum
decrease of accuracy is 4.84% for Italian, and 5.00% for English.

It is interesting to note that in each one of those 160 learned models a feature
corresponding to a configuration adopting keywords for representing passages
is removed. Hence the signal brought by keywords is more relevant than those
brought by stems and lemmas.

We also performed ablation tests by removing groups of features. We defined
the following twelve di�erent groups:

• Five groups, each corresponding to a di�erent answer scoring criterion, i.e.
each group contains all the features corresponding to all the configurations
of each single criterion;

• Three groups, each corresponding to a di�erent level of linguistic analysis
adopted for processing the passages of text returned by the QA module;

• Two groups, each containing all the configurations using and not using the
question expansion strategy;

• Two groups, each containing all the configurations using a number of pas-
sages from 1 to 5, and from 10 to 30, respectively.

Figure 7.6 reports the decrease of accuracy obtained by di�erent models
trained by removing each single group of features.

Groups with higher values are better, meaning that those features have a
higher impact on the overall performance of the model, since their ablation leads
to a higher decrease of accuracy. All the results are statistically significant when
compared to the best configuration obtained by the learning to rank strategy
(p << 0.0001).

As regards the groups corresponding to the answer scoring criteria, the best
performance is obtained by LCS, followed by TL, Density, Overlap and ES.
A comparison with the performance of the single configurations reported in
Table 7.2, Table 7.3, Table 7.4 and Table 7.5, shows that Overlap and Density
criteria are the best performing individually, but when they are individually

An Artificial Player for “Who Wants to Be a Millionaire?” 113

removed, the overall performance is not significantly di�erent. This supports the
finding that the signal they bring is very overlapping. On the other side, the TL
criterion was the worst performing individually but, when individually removed,
it leads to a decrease of the overall accuracy greater than 5%. As regards the
linguistic analysis adopted for processing the passages of text returned by the
QA module, keyword-based representations have the best performance, followed
by stems and lemmas which behave similarly. This was already observed by
removing one configuration at a time, where the ablation of configurations using
representations based on stems or lemmas did not lead to a decrease of accuracy.
As regards the question expansion mechanism, methods adopting it shows a
slightly better performance (less than 1%) than those not adopting it, and this
is in line with the performance of the single configurations, in which we observed
that the question expansion does not seem to have impact on the accuracy of
the system. Finally, the configurations using a fewer number of passages (from
1 to 5) are better than those using more passages (from 10 to 30). This seems
to contradict the finding stemmed from the analysis of the top-15 configurations
(Table 7.2 and Table 7.3), where the best performance were obtained using 15 to

2.32%

4.25%

5.90%

6.70%

8.94%

9.68%

11.49%

1.91%

3.93%

4.37%

5.59%

11.18%

2.29%

4.84%

6.12%

6.63%

8.98%

9.74%

11.78%

2.04%

3.57%

4.33%

5.61%

11.27%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%

10-30

1-5

No

Yes

Lemmas

Stems

Keywords

ES

Overlap

Density

TL

LCS

P
as

sa
ge

s
(6

00
)

Q
E

(6
00

)

Li
ng

ui
st

ic
an

al
ys

is
(4

00
)

C
rit

er
ia

(2
40

)

Decrease of accuracy

Italian dataset English dataset

Figure 7.6: Decrease of accuracy for ablation of feature groups.

For each group, the number of features removed is also reported.

An Artificial Player for “Who Wants to Be a Millionaire?” 114

30 passages. A possible interpretation is that the information overlap existing
using 15 to 30 passages is higher than that existing using 1 to 5 passages, and
this led the former combination to be less e�ective than the latter.

Per Level Analysis of System and Human Performance

We compared the performance of QA and Answer Scoring with that of human
players to provide answers to questions at di�erent levels of di�culty.

Playing successfully the WWBM game heavily depends on the player’s knowl-
edge about popular culture, hence the comparison with the human players is
only performed for the Italian dataset. To this purpose we involved 98 human
players, selected using the availability sampling strategy [Singleton and Straits,
1993] (Italian students or graduates). The dataset of 1,960 Italian questions was
randomly split into 98 disjoint sets of 20 questions each; each set was assigned
to a di�erent user, who provided the answers without having the possibility to
consult the Web or other knowledge sources (the level of each question was not
disclosed to the users).

As baseline we queried Google with each question and we retrieved the top-30
snippets of text returned by the search engine. Hence, we computed a score for
each candidate answer by multiplying the number of times the answer occurred
in each snippet with the inverse of the rank of the snippet. Finally, we selected
the candidate answer with the highest score (a random selection was adopted
to break ties). We refer to this as Google baseline.

As Google queries the whole web, while we use only information available
in Wikipedia, we decided to compare against a more fair baseline as well. We
queried Google restricting the results only to pages coming from Wikipedia,
retrieving the top-30 snippets and scoring them in the same way as the Google
baseline. We refer to this as We refer to this as Google Wikipedia baseline.

Figure 7.7 and Figure 7.8 report, for each level of the game:

1. the accuracy of the best configuration obtained by the learning to rank
strategy for Italian and English, whose average accuracy is 79.64% (‡ =
6.07%) for Italian and 76.41% (‡ = 1.45%) for English;

2. the accuracy of the Google baseline, which is 67.13% for Italian and 71.80%
for English;

3. the accuracy of the Google Wikipedia baseline, which is 51.7% for Italian
and 60.65% for English;

4. the accuracy achieved by the human players, which is 51.33% (‡ = 17.61%)
for Italian.

An Artificial Player for “Who Wants to Be a Millionaire?” 115

The system’s improvement over Google baseline, Google Wikipedia baseline
and human players is statistically significant with p << 0.0001, regardless of
the language.

The system has quite similar performance for all the levels of the game.
As regards the Italian dataset, the best performance is obtained for level 2,
while the worst is obtained for levels 7 and 13. However, the error analysis

System performance for English

A
cc

ur
ac

y
%

0%

15%

30%

45%

60%

75%

90%

Level of the game
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

Google Wikipedia baseline Google baseline
QA and Answer Scoring

Figure 7.7: Per level accuracy of system and human performance for English.

Human and system performance for Italian

A
cc

ur
ac

y
%

0%

15%

30%

45%

60%

75%

90%

Level of the game
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

Human players Google Wikipedia baseline
Google baseline QA and Answer Scoring

Figure 7.8: Per level accuracy of system and human performance for Italian.

An Artificial Player for “Who Wants to Be a Millionaire?” 116

did not report any specific problem for those levels: we only observed a higher
concentration of questions the system is not able to deal with (see Section 7.8.1)
in one of the five folds. As regards English, the performance is almost constant
for all the levels of the game (indeed the standard deviation is very low).

Accuracy of human players (for Italian) decreases almost monotonically, with
the best performance obtained on the first level of the game, and the worst on
level 14. This observation is coherent with the fact that lower levels of the game
correspond to easier questions, while higher levels correspond to more complex
questions for which a deeper knowledge is required to provide the correct an-
swers.

The primacy of the system (for Italian) is evident: it significantly outper-
forms humans for all the 15 levels of the game (not only on average). It is worth
to analyze the performance of the players for groups of questions from 1 to 5, 6
to 10, and 11 to 15, respectively, when they reach the guarantee points where
the money earned is banked. As regards the first group of questions, humans
obtain the worst performance on the (fourth and) fifth question (61.88%), and
this is not surprising since this is the first point in which players have the guar-
antee to keep the earned money. Even though the level of the questions is not
disclosed to human players, our hypothesis is that milestone questions are likely
more di�cult, due to the way the game is designed. Surprisingly, this behavior
is not observed for the second milestone question, albeit the performance on
that question is below the average. Results obtained by humans on the last
group of questions are all below the average, and not comparable with those
obtained by the system (absolute di�erence in performance ranging from +38%
to +56%).

The Google baseline is always better than human players (for Italian), but
it is less accurate than the system (absolute di�erence in performance amounts
to ≠12.51% for Italian, and ≠4.61% for English, on average).

The Google Wikipedia baseline is less accurate than the Google baseline for
both Italian and English, and is just slightly more accurate than human players
on average (for Italian).

To sum up, the artificial player built using the QA and Answer Scoring
modules has the potential to beat human players when playing a real game
with its rules, since it is able to correctly answer to questions at di�erent levels
of di�culty. We observe very similar performance regardless of the language, i.e.
the Question Answering framework and the Answer Scoring criteria work
in the same way for Italian and English. The small di�erences in performance
are likely due to the di�erent number of documents extracted from Wikipedia
(almost one million for Italian, and three millions for English), which could have
impact on the performance of the search engines in the QA framework, and of
course to the fact that the two datasets are not comparable.

An Artificial Player for “Who Wants to Be a Millionaire?” 117

€ 0.00

€ 20,000.00

€ 40,000.00

€ 60,000.00

€ 80,000.00

€ 100,000.00

€ 120,000.00

€ 140,000.00

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.
55 0.

6

0.
65 0.

7

0.
75 0.

8

0.
85 0.

9

E
ar

ne
d

m
on

ey

Threshold2

Threshold2 optimization

Average income (Italian) Average income (English)

E
ar

ne
d

M
on

ey

Threshold2

Figure 7.9: Plot of the average income for di�erent values of the threshold.

However, playing a real game is a very complex task, since it requires a proper
strategy to manage the lifelines, to decide whether to answer to a question or
to retire from the game by taking the earned money. This is the purpose of the
experiment described in the next section.

7.8.2 Experiment 2: Evaluation of the Artificial Player
The goal of this experiment is to evaluate the ability of the artificial player to
play the game, by implementing a proper strategy to use the lifelines, to decide
whether to answer to a question even in a condition of uncertainty or to retire
from the game by taking the earning money. We ran the experiment by com-
paring the performance of the human players with the performance achieved by
the best system configuration obtained by using the learning to rank approach,
and whose strategy to play the game is defined by the decision making algo-
rithm described in Section 7.7. The comparison is carried out by evaluating the
level reached during the game and the money earned by the players5. As in the
previous experiment, the comparison between the performance of the artificial
player and humans is carried out only for Italian.

We involved 35 subjects, di�erent from those involved in the previous exper-
iment, who overall played 325 games. Each game consists of questions selected
by the Game Manager, which randomly sampled one question for each level
as the game proceeds (games played by the same human player always have

5
The Italian and English versions of the game have a di�erent currency and a di�erent

distribution of monetary values for each level of the game. For the sake of comparison we

decided to use the same currency and monetary values as for Italian.

An Artificial Player for “Who Wants to Be a Millionaire?” 118

di�erent questions for the same level). On the other side, the artificial player
played 160 games, whose questions are also selected by the Game Manager
from both the Italian and English datasets. An important setting to configure
the artificial player is the value of the two thresholds used by the decision mak-
ing algorithm for assessing a situation of uncertainty (Section 7.7). Threshold

1

is used to evaluate the score of the best candidate answer, while threshold
2

is
used to evaluate the di�erence between the score of the best and the second
best candidate answer. We decided to assign 0 to threshold

1

, i.e. answers with
a score di�erent from zero are always trusted and used by the artificial player.
The value of threshold

2

was optimized by empirically varying its value, and
selecting the one which led the artificial player to obtain the highest average
income on the questions in the validation set of the first fold. Threshold

2

was
finally set to 0.2 for both Italian and English (plot showing how di�erent values
a�ect the average income depicted in Figure 7.9).

Figure 7.10 shows the boxplot of the levels reached during the game and
Figure 7.11 the boxplot of the money earned by the players, while Figures 7.12
and 7.13 report the distribution of games reaching a specific level and the dis-
tribution of games ended with the income in a specific interval.

All the players are able to reach the last level of the game, but the average
level reached by humans is between five and six (5.65), with respect to the
artificial player which reaches a level between seven and eight, i.e. 7.88 and
7.60 for Italian and English, respectively. This is also highlighted by the median
value, which is the fifth level for humans and the seventh for the artificial player.

More than half of the times (51.38%) the human players ended the game by
reaching levels from 1 to 5, while 40% of times reached levels 6 to 10. Few times
(8.62%) humans were able to reach the last levels (level 15 reached only once).
The distribution of the games ended by the artificial player in the three groups of
questions is almost uniform for both Italian and English (with a slightly better
performance for Italian), and this is coherent with the results in Figure 7.7 and
Figure 7.8, in which the accuracy of the system is very similar for all the levels
of the game.

301 out of 325 games (92.61%) played by humans ended due to an error in
the response, while 24 times (7.39%) the players ended the game by retiring and
taking the earned money (in three cases the players retired from the game at level
6 and 11, even though a wrong answer would not have any e�ect on the earned
money). Moreover, human players never ended the game with the maximun
prize. Di�erently from humans, the artificial player was able to successfully
complete the game. Indeed, it earned Ä1,000,000 17 times (10.62%) for Italian,
and 12 times (7.50%) for English. 116 games (72.50%) ended due to a wrong
answer by the artificial player for Italian, while 27 times (16.87%) it retired
from the game without providing the answer. The artificial player for English

An Artificial Player for “Who Wants to Be a Millionaire?” 119

Humans Virtual Player for Italian Virtual Player for English

2
4

6
8

10
12

14

Levels reached during the game
le

ve
ls

1
2

3
4

5
6

7
8

9
11

13
15

Le
ve

ls

Humans Artificial Player for EnglishArtificial Player for Italian

Figure 7.10: Distribution of the levels reached during the game by the players.

Upper and lower ends of the boxes represent the 3rd and 1st quartile, respec-
tively. Whiskers extend to the most extreme data point which is no more than
1.5 times the interquartile range. Median values are depicted with solid lines,
mean values with solid points.

ended 114 games (71.25%) due to a wrong answer, and retired from the game
34 times (21.25%). The highest percentage of games ended by the artificial
player without providing the answer highlights its more conservative and low
risk strategy. It is interesting to note that the decision making algorithm does
not allow the artificial player to end the game at level 6 or 11.

The money earned by humans is Ä5,926 on average, while the average income
of the artificial player is significantly higher. Indeed, it earned Ä114,531 for
Italian, and Ä88,878 for English. The detailed figures are shown in Figure 7.13,
where the games ended with a zero income are reported, as well as the games
ended in each interval corresponding to milestone questions. Most of the games
played by humans (88.30%) ended with a zero income or by answering questions
in the first group. This means that they reached the last two groups of questions
11.70% of times, di�erently from the artificial player which reached the last two
groups of questions about 40% of times for both Italian and English. The fewer
percentage of games ended with a zero income by the artificial player confirms
its risk averse behavior (albeit some di�erences between Italian and English
exist) that, coupled with its ability to provide correct answers regardless of the

An Artificial Player for “Who Wants to Be a Millionaire?” 120

Humans Virtual Player for Italian Virtual Player for English

Earned money

€ 0

€ 10

€ 100

€ 1,000

€ 10,000

€ 100,000

€ 1,000,000

Humans Artificial Player for EnglishArtificial Player for Italian

Figure 7.11: Distribution of the money earned by the players (in log scale).

Upper and lower ends of the boxes represent the 3rd and 1st quartile, respec-
tively. Whiskers extend to the most extreme data point which is no more than
1.5 times the interquartile range. Median values are depicted with solid lines,
mean values with solid points.

Level 1 to 5 Level 6 to 10 Level 11 to 15
Human players 51.38% 40.00% 8.62%
Virtual player for Italian 30.00% 39.38% 30.62%
Virtual player for English 36.25% 38.13% 25.62%

0%
10%
20%
30%
40%
50%
60%

%
 o

f g
am

es

Level reached

Artificial Player for Italian

Human Players

Artificial Player for English

Figure 7.12: Distribution of games reaching a specific level.

level of the game, allows it to end the games with a higher average income.
Figure 7.14 reports the use of the lifelines during the di�erent stages of the

game.
The comparison of the strategies adopted by humans and the artificial player

An Artificial Player for “Who Wants to Be a Millionaire?” 121

€ 0]0, 3,000] €]3,000, 20,000] €]20,000, 1,000,000] €
Human players 51.38% 36.92% 8.31% 3.39%
Virtual player for Italian 28.75% 30.62% 25.63% 15.00%
Virtual player for English 35.62% 25.00% 23.75% 15.63%

0%
10%
20%
30%
40%
50%
60%

%
 o

f g
am

es

Earned money Earned money

Human Players
Artificial Player for Italian
Artificial Player for English

Figure 7.13: Distribution of games ended with the income in a specific interval.

Level
1 to 5

Level
6 to 10

Level
11 to 15

Level
1 to 5

Level
6 to 10

Level
11 to 15

Level
1 to 5

Level
6 to 10

Level
11 to 15

Poll the Audience Phone a Friend 50-50
Humans 19.63% 16.18% 1.33% 11.14% 19.36% 2.12% 10.34% 15.65% 4.24%
VP for Italian 42.86% 14.29% 3.40% 8.84% 18.37% 5.44% 0.00% 2.72% 4.08%
VP for English 42.86% 13.14% 1.71% 12.57% 18.86% 5.14% 0.00% 4.57% 1.14%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

%
 o

f l
ife

lin
es

Use of lifelines

%
 o

f l
ife

lin
es

AP for Italian
Humans

AP for English

Figure 7.14: Distribution of the lifelines used during the game.

is not fair since the latter uses a static order for the available lifelines, as defined
by the decision making algorithm (i.e. Poll the Audience, Phone a Friend,
50:50). Despite this limitation, overall, the support provided by the lifelines to
the artificial player is valuable. Indeed, the artificial player is able to provide
the correct answer 114 times for Italian and 141 times for English thanks to the
lifelines. Human players and the artificial player use a single lifeline per game
on average, hence they behave in a very similar way. During the first stages of
the game, the frequency of usage of Poll the Audience by the artificial player
(42.86% both for Italian and for English) is as much as the cumulative frequency
of use of all the three available lifelines by the human players (41.11%). This
means that the artificial player is forced to use that lifeline before the others, as
defined in the decision making algorithm, while the human players use all the
available lifelines, even though they prefer Poll the Audience during the first
stages of the game. The frequency of use of Phone a Friend by humans and
the artificial player is quite similar. As expected, 50:50 is never used by the
artificial player during the first levels of the game, while humans uniformly used

An Artificial Player for “Who Wants to Be a Millionaire?” 122

it in all the levels of the game.
To sum up, as expected from the results of Experiment 1, the artificial player

is able to outperform humans, even though it adopts a very simple decision mak-
ing strategy. The better performance is in terms of both the average reached
level and the earned money at the end of the game. The performance of the
artificial player for Italian and English is pretty much the same, except the av-
erage income, which is significantly better for Italian than English. As observed
for the performance of the QA and Answer Scoring, this is likely due to the
di�erent size of the knowledge sources for Italian and for English, as well as of
course to the di�erent datasets used in the experiment.

7.9 Summary
We proposed the architecture of an artificial player for the language game “Who
Wants to Be a Millionaire?”, based on the following modules:

• Question Answering: it is able to retrieve passages of text relevant to
a specific question expressed in natural language, by using Wikipedia and
DBpedia open knowledge sources;

• Answer Scoring: it implements several heuristics based on the analysis
of the results returned by the Question Answering module, in order to
assign a score to the four candidate answers;

• Decision Making: it chooses the strategy to play the game, by exploiting
the scores of the four candidate answers, the availability of lifelines, and
the current level of the game.

Hence, we can provide an answer to both Research Question 3 (RQ3) and
Research Question 4 (RQ4). As regards RQ3, this work actually led to the
definition of an e�ective language-independent framework for QA and answer
validation able to leverage Wikipedia and DBpedia open knowledge sources, as
well as to an e�ective strategy to combine di�erent criteria for scoring candidate
answers through machine learning techniques.

As regards RQ4, using the Question Answering and Answer Scoring modules
in RQ1 we were able to build an artificial player which outperforms human
players in terms of average accuracy in correctly answering to questions of the
WWBM game, and in terms of ability to play real games with their rules.

Part IV

Conclusion

123

8

(Research) Question
Answering

“Forty-two!” yelled Loonquawl. “Is that all you’ve got to show for
seven and a half million years’ work?”
“I checked it very thoroughly,” said the computer, “and that quite def-
initely is the answer. I think the problem, to be quite honest with you,
is that you’ve never actually known what the question is.”

– Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Throughout the chapters of this thesis we tried to answer the four research
questions in Section 1.1.

In particular, in Chapter 5 and Chapter 6 we contribute to bring order to the
vast literature on the task of best answer selection by gathering a big number
of features, grouped in five families, combining them with a learning to rank
approach, and testing them on large datasets from Yahoo! Answers. We propose
a new suite of Distributional-Semantics-based features, in combination with the
textual ones and the information from several expertise networks. Besides being
able to outperform the prediction ability of state-of-the-art methods up to 27%
in P@1, our experiments allow us also to draw important conclusions about the
impact of di�erent features employed that have never been spell out in previous
literature due to a lack of extensive and systematic feature comparison. We
summarize our findings as follows.

• Textual features are by far the ones with higher predictive potential, com-
pared to user-centric features or to the expertise network centrality scores.
This is mainly due to the fact that the content of the question and answers
(their topic and structure) are a more important source of information to
determine the question-answering match rather than the expertise of the

124

(Research) Question Answering 125

answerers. Those features are to prefer when dealing with factual-type
questions.

• Among the textual features, text quality and Distributional Semantics are
in general to prefer to linguistic similarity. We indeed found that linguis-
tic similarity’s signal is mostly captured by other features already. This
is an important finding as linguistic similarity features have been used
in a number of previous approaches but are roughly 12 times more com-
putationally expensive than Distributional Semantics based ones. This
answers RQ2.

• The new Distributional Semantics based features proposed achieve surpris-
ingly good results considering their small number. This answers RQ1.

• User and network features determine a considerable improvement over
the textual-based features and their contribution is not completely over-
lapping, meaning that considering network interaction rather than the in-
dividual user activity adds real value to the prediction.

We believe our work will help to take the stock of the research on the task
of best answer prediction and set the basis for new developments in the field.

In Chapter 7, we proposed the architecture of an artificial player for the lan-
guage game “Who Wants to Be a Millionaire?”, based on the following modules:

• Question Answering: is able to retrieve passages of text relevant to a
specific question expressed in natural language, by using Wikipedia and
DBpedia open knowledge sources;

• Answer Scoring: implements several heuristics based on the analysis of
the results returned by the Question Answering module, in order to assign
a score to the four candidate answers;

• Decision Making: chooses the strategy to play the game, by exploiting
the scores of the four candidate answers, the availability of lifelines, and
the current level of the game.

Hence, we can provide an answer to both RQ3 and RQ4. As regards RQ3,
this work actually led to the definition of an e�ective language-independent
framework for QA and answer validation able to leverage Wikipedia and DB-
pedia open knowledge sources, as well as to an e�ective strategy to combine
di�erent criteria for scoring candidate answers through machine learning tech-
niques.

As regards RQ4, using the Question Answering and Answer Scoring modules
in RQ1 we were able to build an artificial player which outperforms human
players in terms of average accuracy in correctly answering to questions of the
WWBM game, and in terms of ability to play real games with their rules.

(Research) Question Answering 126

8.1 Future Work
The experiments described in this thesis helped to answer the research questions
we were aiming to answer. At the same time there are sill several directions that
need to be investigated and a lot of future work to do.

From an experimental point of view, there are two major points to address
for getting an even more detailed insight about the usefulness of DSMs in QA.

The first is to analyze the impact of the model construction methods on the
overall performance. Building models adopting bigrams and trigrams and not
only unigrams could a�ect the ability to incorporate named entities inside the
semantic space. Experimenting with di�erent numbers of dimensions, maybe as
a function of the corpus size, is another interesting analysis to carry out, as is
comparing models built on simple terms with models built adopting di�erent
lexicalization levels, like stems, lemmas or even word senses.

The second relevant point is the semantic compositionality. Our proposed
approach was to sum the vectors of terms present in questions and answers in
order to have a composite representation, but several other operators can be
used for this task. We stuck with the sum because no clear winner emerged in
literature as the best way to compose term vectors, and the datasets adopted
to evaluate them reported really low agreement among the human assessors.
Because of this we decided to follow the simplest and more e�cient option and
obtained good results. Nevertheless, a clear and wide-scope study on semantic
compositionality would be really beneficial for both scientific understanding and
practical implications, like improved performance in our experiments.

A way to integrate factoid and non-factoid question answering techniques in
a coherent approach in order to cover a really wide range of possible questions
would be a really compelling future research. Our proposal for merging QA over
linked open data with QA over unstructured text is a step in that direction, but
several other steps should be done in order to full address all remaining issues.
For example, speaking more in general of the weaknesses of our proposals, our
approach does not consider any form of reasoning, while a really open-domain
QA system would probably need some kind of reasoning (maybe abductive)
in order to answer specific kinds of complex questions, where the system has
no complete knowledge and tries to guess an answer. In our approach the QA
system knows only what is available in the corpus used for finding answers, while
using this knowledge to guess novel answers, maybe merging available answers,
maybe doing inference on them, would for sure be an interesting future work to
address.

Another fascinating and thought-provoking direction that we foresee has
roots in the fact that QA systems have no preconceptions on the answers they
give, they just use evidence in the form of text and data, and this leads the
users of these systems to possible serendipitous discoveries. Deepen this aspect

(Research) Question Answering 127

of QA systems is interesting from both a humanist and psychological point of
view and not only from a technical point of view.

Finally, we think that a multidisciplinary approach to the analysis of the
possible implications of the actual and future QA technology is of absolute
importance. Like every technology that radically changes how humans actually
do things, QA technology is seen as exciting for its time-saving knowledge-
enriching business-enabling decision support potential, but it is also seen as
frightening for the possible abuses like replacing human judgment, taking away
jobs and global surveillance related fears. This opens up many questions to be
answered from a philosophical, economical, legal, sociological, psychological and
ethical point of view.

Bibliography

David A. Ferrucci, Anthony Levas, Sugato Bagchi, David Gondek, and Erik T. Mueller. Watson: Beyond jeopardy!
Artificial Intelligence, 199:93–105, 2013.

David A. Ferrucci, Eric W. Brown, Jennifer Chu-Carroll, James Fan, David Gondek, Aditya Kalyanpur, Adam Lally,
J. William Murdock, Eric Nyberg, John M. Prager, Nico Schlaefer, and Christopher A. Welty. Building watson:
An overview of the deepqa project. AI Magazine, 31(3):59–79, 2010.

Ludwig Wittgenstein. Philosophische Untersuchungen. Suhrkamp Verlag, Frankfurt am Main, 1953.

Piero Molino and Pierpaolo Basile. Questioncube: a framework for question answering. In Giambattista Amati,
Claudio Carpineto, and Giovanni Semeraro, editors, Proceedings of the 3rd Italian Information Retrieval Workshop, Bari,
Italy, January 26-27, 2012, volume 835 of CEUR Workshop Proceedings, pages 167–178. CEUR-WS.org, 2012.

Piero Molino, Pierpaolo Basile, Annalina Caputo, Pasquale Lops, and Giovanni Semeraro. Exploiting distributional
semantic models in question answering. In Sixth IEEE International Conference on Semantic Computing, ICSC 2012,
Palermo, Italy, September 19-21, 2012, pages 146–153. IEEE Computer Society, 2012. ISBN 978-1-4673-4433-3.

Piero Molino and Luca Maria Aiello. Distributed representations for semantic matching in non-factoid question an-
swering. In Julio Gonzalo, Hang Li, Alessandro Moschitti, and Jun Xu, editors, Proceedings of Workshop on Semantic
Matching in Information Retrieval co-located with the 37th international ACM SIGIR conference on research and development in
information retrieval, SMIRSIGIR 2014, Queensland, Australia, July 11, 2014., volume 1204 of CEUR Workshop Proceedings,
pages 38–45. CEUR-WS.org, 2014.

Piero Molino, Pierpaolo Basile, Ciro Santoro, Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. A virtual
player for "who wants to be a millionaire?" based on question answering. In Matteo Baldoni, Cristina Baroglio,
Guido Boella, and Roberto Micalizio, editors, AI*IA 2013: Advances in Artificial Intelligence - XIIIth International
Conference of the Italian Association for Artificial Intelligence, Turin, Italy, December 4-6, 2013. Proceedings, volume 8249 of
Lecture Notes in Computer Science, pages 205–216. Springer, 2013a. ISBN 978-3-319-03523-9.

Piero Molino, Pierpaolo Basile, Annalina Caputo, Pasquale Lops, and Giovanni Semeraro. Distributional semantics
for answer re-ranking in question answering. In Roberto Basili, Fabrizio Sebastiani, and Giovanni Semeraro,
editors, Proceedings of the 4th Italian Information Retrieval Workshop, Pisa, Italy, January 16-17, 2013, volume 964 of CEUR
Workshop Proceedings, pages 100–103. CEUR-WS.org, 2013b.

Piero Molino. Semantic models for answer re-ranking in question answering. In Jones et al. [2013], page 1146. ISBN
978-1-4503-2034-4.

Ellen M. Voorhees and Dawn M. Tice. The TREC-8 question answering track evaluation. In TREC, 1999.

Anselmo Peñas, Pamela Forner, Álvaro Rodrigo, Richard F. E. Sutcli�e, Corina Forascu, and Cristina Mota.
Overview of respubliqa 2010: Question answering evaluation over european legislation. In Braschler et al. [2010].
ISBN 978-88-904810-0-0.

Bert F. Jr. Green, Alice K. Wolf, Carol Chomsky, and Kenneth Laughery. Baseball, an automatic question-answerer.
Managing Requirements Knowledge, International Workshop on, 0:219, 1961.

Robert F. Simmons. Answering english questions by computer: a survey. Communumintions of the ACM, 8(1):53–70,
1965.

David A. Ferrucci. Ibm’s watson/deepqa. SIGARCH Computer Architecture News, 39(3), 2011.

Susan T. Dumais, Michele Banko, Eric Brill, Jimmy J. Lin, and Andrew Y. Ng. Web question answering: is more
always better? In SIGIR 2002: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, August 11-15, 2002, Tampere, Finland, pages 291–298. ACM, 2002.

Jimmy J. Lin. An exploration of the principles underlying redundancy-based factoid question answering. ACM
Transactions on Information Systems, 25(2), 2007.

Sanda M. Harabagiu, Marius Pa�ca, and Steven J. Maiorano. Experiments with open-domain textual question
answering. In COLING 2000, 18th International Conference on Computational Linguistics, Proceedings of the Conference, 2
Volumes, July 31 - August 4, 2000, Universität des Saarlandes, Saarbrücken, Germany, pages 292–298. Morgan Kaufmann,
2000a.

128

BIBLIOGRAPHY 129

Marius Pa�ca and Kiril Ribarov. Review: Open-Domain Question Answering from Large Text Collections, volume 81. Kluwer
Academic Publishers, Hingham, MA, USA, 2004.

Suzan Verberne, Lou Boves, Nelleke Oostdijk, and Peter-Arno Coppen. Using syntactic information for improving
why-question answering. In Donia Scott and Hans Uszkoreit, editors, COLING 2008, 22nd International Conference on
Computational Linguistics, Proceedings of the Conference, 18-22 August 2008, Manchester, UK, pages 953–960, 2008. ISBN
978-1-905593-44-6.

Sanda M. Harabagiu, Dan I. Moldovan, Marius Pa�ca, Rada Mihalcea, Mihai Surdeanu, Razvan C. Bunescu, Roxana
Girju, Vasile Rus, and Paul Morarescu. FALCON: boosting knowledge for answer engines. In TREC, 2000b.

Eduard H. Hovy, Laurie Gerber, Ulf Hermjakob, Michael Junk, and Chin-Yew Lin. Question answering in webclo-
pedia. In TREC, 2000.

Jiangping Chen, Anne Diekema, Mary D. Ta�et, Nancy J. McCracken, Necati Ercan Ozgencil, Ozgur Yilmazel, and
Elizabeth D. Liddy. Question answering: CNLP at the TREC-10 question answering track. In TREC, 2001.

Dan I. Moldovan, Marius Pasca, Sanda M. Harabagiu, and Mihai Surdeanu. Performance issues and error analysis
in an open-domain question answering system. ACM Transactions on Information Systems, 21(2):133–154, 2003.

Xin Li and Dan Roth. Learning question classifiers: the role of semantic information. Natural Language Engineering,
12(3):229–249, 2006.

Suzan Verberne, Lou Boves, Nelleke Oostdijk, and Peter-Arno Coppen. What is not in the bag of words for Why-qa?
Computational Linguistics, 36(2):229–245, 2010.

Ryuichiro Higashinaka and Hideki Isozaki. Corpus-based question answering for why-questions. In Third International
Joint Conference on Natural Language Processing, IJCNLP 2008, Hyderabad, India, January 7-12, 2008, pages 418–425. The
Association for Computer Linguistics, 2008.

Radu Soricut and Eric Brill. Automatic question answering using the web: Beyond the factoid. Information Retrieval,
9(2):191–206, 2006.

Eugene Agichtein, Carlos Castillo, Debora Donato, Aristides Gionis, and Gilad Mishne. Finding high-quality content
in social media. In Najork et al. [2008], pages 183–194.

Mihai Surdeanu, Massimiliano Ciaramita, and Hugo Zaragoza. Learning to rank answers to non-factoid questions
from web collections. Computational Linguistics, 37(2):351–383, 2011.

Arvind Agarwal, Hema Raghavan, Karthik Subbian, Prem Melville, Richard D. Lawrence, David Gondek, and
James Fan. Learning to rank for robust question answering. In Xue-wen Chen, Guy Lebanon, Haixun Wang,
and Mohammed J. Zaki, editors, 21st ACM International Conference on Information and Knowledge Management, CIKM’12,
Maui, HI, USA, October 29 - November 02, 2012, pages 833–842. ACM, 2012. ISBN 978-1-4503-1156-4.

Tie-Yan Liu. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval, 3(3):225–331,
2009.

Suzan Verberne, Hans van Halteren, Daphne Theijssen, Stephan Raaijmakers, and Lou Boves. Learning to rank for
why-question answering. Information Retrieval, 14(2):107–132, 2011.

Vasin Punyakanok, Dan Roth, Wen-tau Yih, and Dav Zimak. Semantic role labeling via integer linear programming
inference. In COLING 2004, 20th International Conference on Computational Linguistics, Proceedings of the Conference, 23-27
August 2004, Geneva, Switzerland, 2004.

Libin Shen and Aravind K. Joshi. Ranking and reranking with perceptron. Machine Learning, 60(1-3):73–96, 2005.

Renxu Sun, Jing Jiang, Yee Fan Tan, Hang Cui, Tat-Seng Chua, and Min-Yen Kan. Using syntactic and semantic
relation analysis in question answering. In Voorhees and Buckland [2005].

Nico Schlaefer, Jeongwoo Ko, Justin Betteridge, Manas A. Pathak, Eric Nyberg, and Guido Sautter. Semantic
extensions of the ephyra QA system for TREC 2007. In Ellen M. Voorhees and Lori P. Buckland, editors,
Proceedings of The Sixteenth Text REtrieval Conference, TREC 2007, Gaithersburg, Maryland, USA, November 5-9, 2007, volume
Special Publication 500-274. National Institute of Standards and Technology (NIST), 2007.

Matthew W. Bilotti. Linguistic and semantic passage retrieval strategies for question answering. SIGIR Forum, 44
(2):83, 2010.

Lorand Dali, Delia Rusu, Blaz Fortuna, Dunja Mladenic, and Marko Grobelnik. Question answering based on
semantic graphs. In Proceedings of the Workshop on Semantic Search (Sem-Search 2009), 2009.

Aliaksei Severyn and Alessandro Moschitti. Structural relationships for large-scale learning of answer re-ranking.
In Hersh et al. [2012], pages 741–750. ISBN 978-1-4503-1472-5.

Abdessamad Echihabi and Daniel Marcu. A noisy-channel approach to question answering. In Hinrichs and Roth
[2003], pages 16–23.

Peter F. Brown, Stephen Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. The mathematics of statistical
machine translation: Parameter estimation. Computational Linguistics, 19(2):263–311, 1993.

BIBLIOGRAPHY 130

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-Seng Chua. Question answering passage retrieval using
dependency relations. In Ricardo A. Baeza-Yates, Nivio Ziviani, Gary Marchionini, Alistair Mo�at, and John
Tait, editors, SIGIR 2005: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, Salvador, Brazil, August 15-19, 2005, pages 400–407. ACM, 2005. ISBN 1-59593-034-5.

Eugene Agichtein, Steve Lawrence, and Luis Gravano. Learning search engine specific query transformations for
question answering. In Vincent Y. Shen, Nobuo Saito, Michael R. Lyu, and Mary Ellen Zurko, editors, Proceedings
of the Tenth International World Wide Web Conference, WWW 10, Hong Kong, China, May 1-5, 2001, pages 169–178. ACM,
2001. ISBN 1-58113-348-0.

Vanessa Murdock and W. Bruce Croft. A translation model for sentence retrieval. In HLT/EMNLP 2005, Human Lan-
guage Technology Conference and Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference,
6-8 October 2005, Vancouver, British Columbia, Canada. The Association for Computational Linguistics, 2005.

Xiaobing Xue, Jiwoon Jeon, and W. Bruce Croft. Retrieval models for question and answer archives. In Myaeng
et al. [2008], pages 475–482. ISBN 978-1-60558-164-4.

Stefan Riezler, Alexander Vasserman, Ioannis Tsochantaridis, Vibhu O. Mittal, and Yi Liu. Statistical machine
translation for query expansion in answer retrieval. In John A. Carroll, Antal van den Bosch, and Annie Zaenen,
editors, ACL 2007, Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, June 23-30, 2007,
Prague, Czech Republic. The Association for Computational Linguistics, 2007.

Nico Schlaefer, P. Gieselman, and Guido Sautter. The ephyra QA system at TREC 2006. In Voorhees and Buckland
[2006].

Christiane D. Fellbaum. WordNet: an electronic lexical database. Language, speech, and communication. MIT Press,
1998. ISBN 9780262061971.

Eros Zanchetta and Marco Baroni. Morph-it! a free corpus-based morphological resource for the italian language.
Corpus Linguistics 2005, 1(1), 2005. ISSN 1747-9398.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

Taku Kudo and Yuji Matsumoto. Fast methods for kernel-based text analysis. In Hinrichs and Roth [2003], pages
24–31.

Eneko Agirre and Aitor Soroa. Personalizing pagerank for word sense disambiguation. In Alex Lascarides, Claire
Gardent, and Joakim Nivre, editors, EACL 2009, 12th Conference of the European Chapter of the Association for Compu-
tational Linguistics, Proceedings of the Conference, Athens, Greece, March 30 - April 3, 2009, pages 33–41. The Association
for Computer Linguistics, 2009.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine. Computer Networks,
30(1-7):107–117, 1998.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky.
The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd Annual Meeting of the Association
for Computational Linguistics: System Demonstrations, pages 55–60, Baltimore, Maryland, June 2014. Association for
Computational Linguistics.

Jinho D. Choi. Optimization of Natural Language Processing Components for Robustness and Scalability. PhD thesis, Computer
Science and Cognitive Science, Boulder, CO, USA, 2012. AAI3549172.

Massimiliano Ciaramita and Yasemin Altun. Broad-coverage sense disambiguation and information extraction with
a supersense sequence tagger. In Dan Jurafsky and Éric Gaussier, editors, EMNLP 2007, Proceedings of the 2006
Conference on Empirical Methods in Natural Language Processing, 22-23 July 2006, Sydney, Australia, pages 594–602. ACL,
2006. ISBN 1-932432-73-6.

Stephen E. Robertson and Hugo Zaragoza. The probabilistic relevance framework: BM25 and beyond. Foundations
and Trends in Information Retrieval, 3(4):333–389, 2009.

Gerard M. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Commununications of
ACM, 18:613–620, November 1975. ISSN 0001-0782.

ChengXiang Zhai and John D. La�erty. A study of smoothing methods for language models applied to ad hoc
information retrieval. In W. Bruce Croft, David J. Harper, Donald H. Kraft, and Justin Zobel, editors, SIGIR 2001:
Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
September 9-13, 2001, New Orleans, Louisiana, USA, pages 334–342. ACM, 2001. ISBN 1-58113-331-6.

Claudio Carpineto, Renato de Mori, Giovanni Romano, and Brigitte Bigi. An information-theoretic approach to
automatic query expansion. ACM Transactions on Information Systems, 19(1):1–27, 2001.

Yuanhua Lv and ChengXiang Zhai. Positional relevance model for pseudo-relevance feedback. In Fabio Crestani,
Stéphane Marchand-Maillet, Hsin-Hsi Chen, Efthimis N. Efthimiadis, and Jacques Savoy, editors, Proceeding of
the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2010, Geneva,
Switzerland, July 19-23, 2010, pages 579–586. ACM, 2010. ISBN 978-1-4503-0153-4.

Gianni Amati and C. J. van Rijsbergen. Probabilistic models of information retrieval based on measuring the
divergence from randomness. ACM Transactions on Information Systems, 20(4):357–389, 2002.

BIBLIOGRAPHY 131

Christof Monz. Minimal Span Weighting Retrieval for Question Answering. In Rob Gaizauskas, Mark Greenwood,
and Mark Hepple, editors, Proceedings of the SIGIR 2004 Workshop on Information Retrieval for Question Answering, pages
23–30, 2004.

Edward A. Fox and Joseph A. Shaw. Combination of multiple searches. In TREC, pages 243–252, 1993.

Thomas K. Landauer and Susan T. Dumais. A solution to plato’s problem: The latent semantic analysis theory of
acquisition, induction, and representation of knowledge. Psychological Review, 104:211–240, 1997.

Curt Burgess, Kay Livesay, and Kevin Lund. Explorations in context space: Words, sentences, discourse. Discourse
Processes, 25(2-3):211–257, 1998.

Michael N. Jones and Douglas J. K. Mewhort. Representing word meaning and order information in a composite
holographic lexicon. Psychological Review, 114(1):1–37, 2007.

Peter D. Turney. Similarity of semantic relations. Computational Linguistics, 32(3):379–416, 2006.

Peter D. Turney and Michael L. Littman. Corpus-based learning of analogies and semantic relations. Machine
Learning, 60(1-3):251–278, 2005.

Michael B.W. Wolfe, M.E. Schreiner, Bob Rehder, Darrell Laham, Peter W. Foltz, Walter Kintsch, and Thomas K.
Landauer. Learning from text: Matching readers and texts by latent semantic analysis. Discourse Processes, 25
(2-3):309–336, 1998.

Peter W. Foltz, Darrell Laham, and Thomas K. Landauer. The intelligent essay assessor: Applications to educational
technology. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning, 1(2), 1999.

Hinrich Schütze and Jan O. Pedersen. Information retrieval based on word senses. In Proceedings of the 4th Annual
Symposium on Document Analysis and Information Retrieval, pages 161–175, 1995.

Hinrich Schütze. Automatic word sense discrimination. Computational Linguistics, 24(1):97–123, 1998.

Pierpaolo Basile. Super-sense tagging using support vector machines and distributional features. In Bernardo
Magnini, Francesco Cutugno, Mauro Falcone, and Emanuele Pianta, editors, Evaluation of Natural Language and
Speech Tools for Italian, International Workshop, EVALITA 2011, Rome, Italy, January 24-25, 2012, Revised Selected Papers,
volume 7689 of Lecture Notes in Computer Science, pages 176–185. Springer, 2011. ISBN 978-3-642-35827-2.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa. Natural
language processing (almost) from scratch. Journal of Machine Learning Research, 12:2493–2537, 2011.

Joseph P. Turian, Lev-Arie Ratinov, and Yoshua Bengio. Word representations: A simple and general method for
semi-supervised learning. In Jan Hajic, Sandra Carberry, and Stephen Clark, editors, ACL 2010, Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics, July 11-16, 2010, Uppsala, Sweden, pages 384–394. The
Association for Computer Linguistics, 2010. ISBN 978-1-932432-66-4.

Peter D. Turney and Patrick Pantel. From frequency to meaning: Vector space models of semantics. Journal of
Artificial Intelligence Research (JAIR), 37:141–188, 2010.

Je� Mitchell and Mirella Lapata. Composition in distributional models of semantics. Cognitive Science, 34(8):1388–
1429, 2010.

Dominic Widdows and Kathleen Ferraro. Semantic vectors: a scalable open source package and online technology
management application. In Proceedings of the International Conference on Language Resources and Evaluation, LREC 2008,
26 May - 1 June 2008, Marrakech, Morocco con [2008].

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A. Harshman. Indexing
by latent semantic analysis. JASIS, 41(6):391–407, 1990.

Pierpaolo Basile, Annalina Caputo, and Giovanni Semeraro. Integrating sense discrimination in a semantic infor-
mation retrieval system. In Alessandro Soro, Eloisa Vargiu, Giuliano Armano, and Gavino Paddeu, editors,
Information Retrieval and Mining in Distributed Environments, volume 324 of Studies in Computational Intelligence, pages
249–265. Springer Berlin / Heidelberg, 2011.

Pentti Kanerva. Sparse Distributed Memory. MIT Press, 1988.

William B. Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space. Conference on
Modern Analysis and Probability, Contemporary Mathematics, 26:189–206, 1984.

S. Dasgupta and A. Gupta. An elementary proof of the johnson-lindenstrauss lemma. Technical report, Technical
Report TR-99-006, International Computer Science Institute, Berkeley, California, USA, 1999.

Linus Sellberg and Arne Jönsson. Using random indexing to improve singular value decomposition for latent semantic
analysis. In Proceedings of the International Conference on Language Resources and Evaluation, LREC 2008, 26 May - 1 June
2008, Marrakech, Morocco con [2008].

Tomas Mikolov, Wen-tau Yih, and Geo�rey Zweig. Linguistic regularities in continuous space word representations.
In Lucy Vanderwende, Hal Daumé III, and Katrin Kirchho�, editors, Human Language Technologies: Conference of the
North American Chapter of the Association of Computational Linguistics, Proceedings, June 9-14, 2013, Westin Peachtree Plaza
Hotel, Atlanta, Georgia, USA, pages 746–751. The Association for Computational Linguistics, 2013a.

BIBLIOGRAPHY 132

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Je�rey Dean. Distributed representations of
words and phrases and their compositionality. In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani,
and Kilian Q. Weinberger, editors, Advances in Neural Information Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States., pages 3111–3119, 2013b.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic language model.
Journal of Machine Learning Research, 3:1137–1155, 2003.

Paul Smolensky. Tensor product variable binding and the representation of symbolic structures in connectionist
systems. Artificial Intelligence, 46(1-2):159–216, 1990.

Hang Li. Learning to Rank for Information Retrieval and Natural Language Processing. Synthesis Lectures on Human Language
Technologies. Morgan & Claypool Publishers, 2011.

Tie-Yan Liu. Learning to Rank for Information Retrieval. Springer, 2011. ISBN 978-3-642-14266-6.

Yoav Freund, Raj D. Iyer, Robert E. Schapire, and Yoram Singer. An e�cient boosting algorithm for combining
preferences. Journal of Machine Learning Research, 4:933–969, 2003.

Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Gregory N.
Hullender. Learning to rank using gradient descent. In Luc De Raedt and Stefan Wrobel, editors, Machine
Learning, Proceedings of the Twenty-Second International Conference (ICML 2005), Bonn, Germany, August 7-11, 2005, volume
119 of ACM International Conference Proceeding Series, pages 89–96. ACM, 2005. ISBN 1-59593-180-5.

Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Huang, and Hsiao-Wuen Hon. Adapting ranking SVM to document
retrieval. In Efthimiadis et al. [2006], pages 186–193. ISBN 1-59593-369-7.

Jun Xu and Hang Li. Adarank: a boosting algorithm for information retrieval. In Wessel Kraaij, Arjen P. de Vries,
Charles L. A. Clarke, Norbert Fuhr, and Noriko Kando, editors, SIGIR 2007: Proceedings of the 30th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands, July 23-27,
2007, pages 391–398. ACM, 2007. ISBN 978-1-59593-597-7.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise approach to listwise
approach. In Zoubin Ghahramani, editor, Machine Learning, Proceedings of the Twenty-Fourth International Conference
(ICML 2007), Corvallis, Oregon, USA, June 20-24, 2007, volume 227 of ACM International Conference Proceeding Series,
pages 129–136. ACM, 2007. ISBN 978-1-59593-793-3.

David Cossock and Tong Zhang. Statistical analysis of bayes optimal subset ranking. IEEE Transactions on Information
Theory, 54(11):5140–5154, 2008.

Christopher J. C. Burges, Krysta Marie Svore, Paul N. Bennett, Andrzej Pastusiak, and Qiang Wu. Learning to
rank using an ensemble of lambda-gradient models. In Chapelle et al. [2011], pages 25–35.

Xiubo Geng, Tie-Yan Liu, Tao Qin, Andrew Arnold, Hang Li, and Heung-Yeung Shum. Query dependent ranking
using k-nearest neighbor. In Myaeng et al. [2008], pages 115–122. ISBN 978-1-60558-164-4.

Irina Matveeva, Chris Burges, Timo Burkard, Andy Laucius, and Leon Wong. High accuracy retrieval with multiple
nested ranker. In Efthimiadis et al. [2006], pages 437–444. ISBN 1-59593-369-7.

Koby Crammer and Yoram Singer. Pranking with ranking. In Thomas G. Dietterich, Suzanna Becker, and Zoubin
Ghahramani, editors, Advances in Neural Information Processing Systems 14 [Neural Information Processing Systems: Natural
and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada], pages 641–647. MIT Press, 2001.

Amnon Shashua and Anat Levin. Ranking with large margin principle: Two approaches. In Suzanna Becker, Se-
bastian Thrun, and Klaus Obermayer, editors, Advances in Neural Information Processing Systems 15 [Neural Information
Processing Systems, NIPS 2002, December 9-14, 2002, Vancouver, British Columbia, Canada], pages 937–944. MIT Press,
2002. ISBN 0-262-02550-7.

Ping Li, Christopher J. C. Burges, and Qiang Wu. Mcrank: Learning to rank using multiple classification and
gradient boosting. In John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis, editors, Advances in
Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing
Systems, Vancouver, British Columbia, Canada, December 3-6, 2007. Curran Associates, Inc., 2007.

David Cossock and Tong Zhang. Subset ranking using regression. In Gábor Lugosi and Hans-Ulrich Simon, editors,
Learning Theory, 19th Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25, 2006, Proceedings,
volume 4005 of Lecture Notes in Computer Science, pages 605–619. Springer, 2006. ISBN 3-540-35294-5.

Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton, Alberta, Canada, pages 133–
142. ACM, 2002. ISBN 1-58113-567-X.

Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. Learning to rank with nonsmooth cost functions. In
Bernhard Schölkopf, John C. Platt, and Thomas Ho�man, editors, Advances in Neural Information Processing Systems
19, Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia,
Canada, December 4-7, 2006, pages 193–200. MIT Press, 2006. ISBN 0-262-19568-2.

Qiang Wu, Christopher J. C. Burges, Krysta Marie Svore, and Jianfeng Gao. Adapting boosting for information
retrieval measures. Information Retrieval, 13(3):254–270, 2010.

BIBLIOGRAPHY 133

Michael J. Taylor, John Guiver, Stephen Robertson, and Tom Minka. Softrank: optimizing non-smooth rank metrics.
In Najork et al. [2008], pages 77–86.

Tao Qin, Tie-Yan Liu, and Hang Li. A general approximation framework for direct optimization of information
retrieval measures. Information Retrieval, 13(4):375–397, 2010.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Daniel Hasan Dalip, Marcos André Gonçalves, Marco Cristo, and Pável Calado. Exploiting user feedback to learn
to rank answers in q&a forums: a case study with stack overflow. In Jones et al. [2013], pages 543–552. ISBN
978-1-4503-2034-4.

Ananth Mohan, Zheng Chen, and Kilian Q. Weinberger. Web-search ranking with initialized gradient boosted
regression trees. In Chapelle et al. [2011], pages 77–89.

Hapnes Toba, Syandra Sari, Mirna Adriani, and Ruli Manurung. Contextual approach for paragraph selection in
question answering task. In Braschler et al. [2010]. ISBN 978-88-904810-0-0.

Dávid Márk Nemeskey. SZTAKI @ respubliqa 2010. In Braschler et al. [2010]. ISBN 978-88-904810-0-0.

Hitesh Sabnani and Prasenjit Majumder. Question answering system: Retrieving relevant passages. In Braschler
et al. [2010]. ISBN 978-88-904810-0-0.

Pamela Forner, Danilo Giampiccolo, Bernardo Magnini, Anselmo Peñas, Álvaro Rodrigo, and Richard F. E. Sutcli�e.
Evaluating multilingual question answering systems at CLEF. In Nicoletta Calzolari, Khalid Choukri, Bente
Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and Daniel Tapias, editors, Proceedings of
the International Conference on Language Resources and Evaluation, LREC 2010, 17-23 May 2010, Valletta, Malta. European
Language Resources Association, 2010. ISBN 2-9517408-6-7.

Mark D. Smucker, James Allan, and Ben Carterette. A comparison of statistical significance tests for information
retrieval evaluation. In Silva et al. [2007], pages 623–632. ISBN 978-1-59593-803-9.

Meredith Ringel Morris, Jaime Teevan, and Katrina Panovich. A comparison of information seeking using search
engines and social networks. In Cohen and Gosling [2010].

Matthew W. Bilotti, Jonathan L. Elsas, Jaime G. Carbonell, and Eric Nyberg. Rank learning for factoid question
answering with linguistic and semantic constraints. In Huang et al. [2010], pages 459–468. ISBN 978-1-4503-
0099-5.

Adam L. Berger, Rich Caruana, David Cohn, Dayne Freitag, and Vibhu O. Mittal. Bridging the lexical chasm:
statistical approaches to answer-finding. In SIGIR, pages 192–199, 2000.

Guangyou Zhou, Yang Liu, Fang Liu, Daojian Zeng, and Jun Zhao. Improving question retrieval in community
question answering using world knowledge. In Francesca Rossi, editor, IJCAI 2013, Proceedings of the 23rd International
Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013. IJCAI/AAAI, 2013. ISBN 978-1-57735-633-2.

Wen-tau Yih, Ming-Wei Chang, Christopher Meek, and Andrzej Pastusiak. Question answering using enhanced lex-
ical semantic models. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, ACL 2013,
4-9 August 2013, Sofia, Bulgaria, Volume 1: Long Papers, pages 1744–1753. The Association for Computer Linguistics,
2013. ISBN 978-1-937284-50-3.

Xiaoyong Liu, W. Bruce Croft, and Matthew B. Koll. Finding experts in community-based question-answering
services. In Otthein Herzog, Hans-Jörg Schek, Norbert Fuhr, Abdur Chowdhury, and Wilfried Teiken, editors,
Proceedings of the 2005 ACM CIKM International Conference on Information and Knowledge Management, Bremen, Germany,
October 31 - November 5, 2005, pages 315–316. ACM, 2005. ISBN 1-59593-140-6.

Nick Craswell, David Hawking, Anne-Marie Vercoustre, and Wilkins Peter. Panoptic expert: Searching for experts
not just for documents. In Ausweb Proceedings, 2001.

Krisztian Balog, Leif Azzopardi, and Maarten de Rijke. Formal models for expert finding in enterprise corpora. In
Efthimiadis et al. [2006], pages 43–50. ISBN 1-59593-369-7.

Pavel Serdyukov and Djoerd Hiemstra. Modeling documents as mixtures of persons for expert finding. In Craig
Macdonald, Iadh Ounis, Vassilis Plachouras, Ian Ruthven, and Ryen W. White, editors, Advances in Information
Retrieval , 30th European Conference on IR Research, ECIR 2008, Glasgow, UK, March 30-April 3, 2008. Proceedings, volume
4956 of Lecture Notes in Computer Science, pages 309–320. Springer, 2008. ISBN 978-3-540-78645-0.

Baichuan Li, Irwin King, and Michael R. Lyu. Question routing in community question answering: putting category
in its place. In Macdonald et al. [2011], pages 2041–2044. ISBN 978-1-4503-0717-8. doi: 10.1145/2063576.2063885.

Fatemeh Riahi, Zainab Zolaktaf, M. Mahdi Shafiei, and Evangelos E. Milios. Finding expert users in community
question answering. In Mille et al. [2012], pages 791–798. ISBN 978-1-4503-1230-1.

Tom Chao Zhou, Michael R. Lyu, and Irwin King. A classification-based approach to question routing in community
question answering. In Mille et al. [2012], pages 783–790. ISBN 978-1-4503-1230-1.

Yutaka Kabutoya, Tomoharu Iwata, Hisako Shiohara, and Ko Fujimura. E�ective question recommendation based
on multiple features for question answering communities. In Cohen and Gosling [2010].

BIBLIOGRAPHY 134

Gideon Dror, Yehuda Koren, Yoelle Maarek, and Idan Szpektor. I want to answer; who has a question?: Yahoo!
answers recommender system. In Chid Apté, Joydeep Ghosh, and Padhraic Smyth, editors, Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, August 21-24, 2011,
pages 1109–1117. ACM, 2011. ISBN 978-1-4503-0813-7. doi: 10.1145/2020408.2020582.

Mingrong Liu, Yicen Liu, and Qing Yang. Predicting best answerers for new questions in community question
answering. In Lei Chen, Changjie Tang, Jun Yang, and Yunjun Gao, editors, Web-Age Information Management,
11th International Conference, WAIM 2010, Jiuzhaigou, China, July 15-17, 2010. Proceedings, volume 6184 of Lecture Notes in
Computer Science, pages 127–138. Springer, 2010. ISBN 978-3-642-14245-1. doi: 10.1007/978-3-642-14246-8_15.

Jun Zhang, Mark S. Ackerman, and Lada Adamic. Communitynetsimulator: Using simulations to study online
community networks. In Charles Steinfield, Brian T. Pentland, Mark Ackerman, and Noshir Contractor, editors,
Communities and Technologies 2007, pages 295–321. Springer London, 2007a. ISBN 978-1-84628-904-0.

Jing Zhang, Jie Tang, and Juan-Zi Li. Expert finding in a social network. In Kotagiri Ramamohanarao, P. Radha
Krishna, Mukesh K. Mohania, and Ekawit Nantajeewarawat, editors, Advances in Databases: Concepts, Systems and
Applications, 12th International Conference on Database Systems for Advanced Applications, DASFAA 2007, Bangkok, Thailand,
April 9-12, 2007, Proceedings, volume 4443 of Lecture Notes in Computer Science, pages 1066–1069. Springer, 2007b.
ISBN 978-3-540-71702-7.

Elena Smirnova and Krisztian Balog. A user-oriented model for expert finding. In Paul D. Clough, Colum Foley,
Cathal Gurrin, Gareth J. F. Jones, Wessel Kraaij, Hyowon Lee, and Vanessa Murdock, editors, Advances in
Information Retrieval - 33rd European Conference on IR Research, ECIR 2011, Dublin, Ireland, April 18-21, 2011. Proceedings,
volume 6611 of Lecture Notes in Computer Science, pages 580–592. Springer, 2011. ISBN 978-3-642-20160-8.

Alessandro Bozzon, Marco Brambilla, Stefano Ceri, Matteo Silvestri, and Giuliano Vesci. Choosing the right crowd:
expert finding in social networks. In Giovanna Guerrini and Norman W. Paton, editors, Joint 2013 EDBT/ICDT
Conferences, EDBT ’13 Proceedings, Genoa, Italy, March 18-22, 2013, pages 637–648. ACM, 2013. ISBN 978-1-4503-1597-
5.

Theodoros Lappas, Kun Liu, and Evimaria Terzi. Finding a team of experts in social networks. In John F. Elder
IV, Françoise Fogelman-Soulié, Peter A. Flach, and Mohammed Javeed Zaki, editors, Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009, pages
467–476. ACM, 2009. ISBN 978-1-60558-495-9.

Byron Dom, Iris Eiron, Alex Cozzi, and Yi Zhang. Graph-based ranking algorithms for e-mail expertise analysis. In
Mohammed Javeed Zaki and Charu C. Aggarwal, editors, Proceedings of the 8th ACM SIGMOD workshop on Research
issues in data mining and knowledge discovery, DMKD 2003, San Diego, California, USA, June 13, 2003, pages 42–48. ACM,
2003.

Yupeng Fu, Rongjing Xiang, Yiqun Liu, Min Zhang, and Shaoping Ma. Finding experts using social network analysis.
In 2007 IEEE / WIC / ACM International Conference on Web Intelligence, WI 2007, 2-5 November 2007, Silicon Valley, CA,
USA, Main Conference Proceedings, pages 77–80. IEEE Computer Society, 2007. ISBN 0-7695-3026-5.

Michael G. Noll, Ching-man Au Yeung, Nicholas Gibbins, Christoph Meinel, and Nigel Shadbolt. Telling experts from
spammers: expertise ranking in folksonomies. In James Allan, Javed A. Aslam, Mark Sanderson, ChengXiang
Zhai, and Justin Zobel, editors, Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2009, Boston, MA, USA, July 19-23, 2009, pages 612–619. ACM, 2009. ISBN
978-1-60558-483-6.

Pawel Jurczyk and Eugene Agichtein. Discovering authorities in question answer communities by using link analysis.
In Silva et al. [2007], pages 919–922. ISBN 978-1-59593-803-9.

Mohamed Bouguessa, Benoît Dumoulin, and Shengrui Wang. Identifying authoritative actors in question-answering
forums: the case of yahoo! answers. In Ying Li, Bing Liu, and Sunita Sarawagi, editors, Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008,
pages 866–874. ACM, 2008. ISBN 978-1-60558-193-4.

Zoltan Gyongyi, Georgia Koutrika, Jan Pedersen, and Hector Garcia-Molina. Questioning Yahoo! Answers. Tech-
nical Report 2007-35, Stanford InfoLab, 2007.

Jing Liu, Young-In Song, and Chin-Yew Lin. Competition-based user expertise score estimation. In Wei-Ying
Ma, Jian-Yun Nie, Ricardo A. Baeza-Yates, Tat-Seng Chua, and W. Bruce Croft, editors, Proceeding of the 34th
International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, Beijing, China, July
25-29, 2011, pages 425–434. ACM, 2011. ISBN 978-1-4503-0757-4.

Çigdem Aslay, Neil O’Hare, Luca Maria Aiello, and Alejandro Jaimes. Competition-based networks for expert
finding. In Jones et al. [2013], pages 1033–1036. ISBN 978-1-4503-2034-4.

Baichuan Li and Irwin King. Routing questions to appropriate answerers in community question answering services.
In Huang et al. [2010], pages 1585–1588. ISBN 978-1-4503-0099-5.

Damon Horowitz and Sepandar D. Kamvar. The anatomy of a large-scale social search engine. In Michael Rappa,
Paul Jones, Juliana Freire, and Soumen Chakrabarti, editors, Proceedings of the 19th International Conference on World
Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010, pages 431–440. ACM, 2010. ISBN 978-1-60558-
799-8.

Shuo Chang and Aditya Pal. Routing questions for collaborative answering in community question answering. In
Jon G. Rokne and Christos Faloutsos, editors, Advances in Social Networks Analysis and Mining 2013, ASONAM ’13,
Niagara, ON, Canada - August 25 - 29, 2013, pages 494–501. ACM, 2013. ISBN 978-1-4503-2240-9.

BIBLIOGRAPHY 135

Haiqiang Chen, Huawei Shen, Jin Xiong, Songbo Tan, and Xueqi Cheng. Social network structure behind the mailing
lists: ICT-IIIS at TREC 2006 expert finding track. In Voorhees and Buckland [2006].

Lada A. Adamic, Jun Zhang, Eytan Bakshy, and Mark S. Ackerman. Knowledge sharing and yahoo answers: everyone
knows something. In Huai et al. [2008], pages 665–674. ISBN 978-1-60558-085-2.

Katrina Panovich, Rob Miller, and David R. Karger. Tie strength in question & answer on social network sites. In
Steven E. Poltrock, Carla Simone, Jonathan Grudin, Gloria Mark, and John Riedl, editors, CSCW ’12 Computer
Supported Cooperative Work, Seattle, WA, USA, February 11-15, 2012, pages 1057–1066. ACM, 2012. ISBN 978-1-4503-
1086-4.

Lin Chen and Richi Nayak. Expertise analysis in a question answer portal for author ranking. In 2008 IEEE / WIC
/ ACM International Conference on Web Intelligence, WI 2008, 9-12 December 2008, Sydney, NSW, Australia, Main Conference
Proceedings, pages 134–140. IEEE Computer Society, 2008. ISBN 978-0-7695-3496-1.

Christopher S. Campbell, Paul P. Maglio, Alex Cozzi, and Byron Dom. Expertise identification using email commu-
nications. In Proceedings of the 2003 ACM CIKM International Conference on Information and Knowledge Management, New
Orleans, Louisiana, USA, November 2-8, 2003, pages 528–531. ACM, 2003. ISBN 1-58113-723-0.

Wei-Chen Kao, Duen-Ren Liu, and Shiu-Wen Wang. Expert finding in question-answering websites: a novel hybrid
approach. In Sung Y. Shin, Sascha Ossowski, Michael Schumacher, Mathew J. Palakal, and Chih-Cheng Hung,
editors, Proceedings of the 2010 ACM Symposium on Applied Computing (SAC), Sierre, Switzerland, March 22-26, 2010, pages
867–871. ACM, 2010. ISBN 978-1-60558-639-7.

Hengshu Zhu, Huanhuan Cao, Hui Xiong, Enhong Chen, and Jilei Tian. Towards expert finding by leveraging
relevant categories in authority ranking. In Macdonald et al. [2011], pages 2221–2224. ISBN 978-1-4503-0717-8.

Pavel Serdyukov, Henning Rode, and Djoerd Hiemstra. Modeling multi-step relevance propagation for expert finding.
In James G. Shanahan, Sihem Amer-Yahia, Ioana Manolescu, Yi Zhang, David A. Evans, Aleksander Kolcz,
Key-Sun Choi, and Abdur Chowdhury, editors, Proceedings of the 17th ACM Conference on Information and Knowledge
Management, CIKM 2008, Napa Valley, California, USA, October 26-30, 2008, pages 1133–1142. ACM, 2008. ISBN 978-
1-59593-991-3.

Jiang Bian, Yandong Liu, Ding Zhou, Eugene Agichtein, and Hongyuan Zha. Learning to recognize reliable users
and content in social media with coupled mutual reinforcement. In Juan Quemada, Gonzalo León, Yoëlle S.
Maarek, and Wolfgang Nejdl, editors, Proceedings of the 18th International Conference on World Wide Web, WWW 2009,
Madrid, Spain, April 20-24, 2009, pages 51–60. ACM, 2009. ISBN 978-1-60558-487-4.

Bee-Chung Chen, Anirban Dasgupta, Xuanhui Wang, and Jie Yang. Vote calibration in community question-
answering systems. In Hersh et al. [2012], pages 781–790. ISBN 978-1-4503-1472-5.

Jiang Bian, Yandong Liu, Eugene Agichtein, and Hongyuan Zha. Finding the right facts in the crowd: factoid
question answering over social media. In Huai et al. [2008], pages 467–476. ISBN 978-1-60558-085-2.

Daniel Gildea and Daniel Jurafsky. Automatic labeling of semantic roles. Computational Linguistics, 28(3):245–288,
2002.

Alexandru-Lucian Gînsca and Adrian Popescu. User profiling for answer quality assessment in q&a communities. In
Jalal Mahmud, James Caverlee, Je�rey Nichols, John O’Donovan, and Michelle X. Zhou, editors, Proceedings of the
2013 Workshop on Data-Driven User Behavioral Modelling and Mining from Social Media, DUBMODCIKM 2013 San Francisco,
CA, USA, October 28, 2013, pages 25–28. ACM, 2013. ISBN 978-1-4503-2417-5.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking: Bringing order
to the web. Technical Report 1999-66, Stanford InfoLab, November 1999. Previous number = SIDL-WP-1999-
0120.

Jon M. Kleinberg. Hubs, authorities, and communities. ACM Computing Surveys, 31(4es):5, 1999.

F. Maxwell Harper, Daniel Moy, and Joseph A. Konstan. Facts or friends?: distinguishing informational and con-
versational questions in social q&a sites. In Dan R. Jr. Olsen, Richard B. Arthur, Ken Hinckley, Meredith Ringel
Morris, Scott E. Hudson, and Saul Greenberg, editors, Proceedings of the 27th International Conference on Human Factors
in Computing Systems, CHI 2009, Boston, MA, USA, April 4-9, 2009, pages 759–768. ACM, 2009. ISBN 978-1-60558-
246-7.

Felix Hieber and Stefan Riezler. Improved answer ranking in social question-answering portals. In Iván Cantador,
Francisco M. Carrero, José Carlos Cortizo, Paolo Rosso, Markus Schedl, and José A. Troyano, editors, Proceedings
of the 3rd International CIKM Workshop on Search and Mining User-Generated Contents, SMUC 2011, Glasgow, United Kingdom,
October 28, 2011, pages 19–26. ACM, 2011. ISBN 978-1-4503-0949-3.

Mark T. Maybury, Oliviero Stock, and Wolfgang Wahlster. Intelligent interactive entertainment grand challenges.
IEEE Intelligent Systems, 21(5):14–18, 2006.

Michael L. Littman. Review: Computer language games. In T. Anthony Marsland and Ian Frank, editors, Computers
and Games, Second International Conference, CG 2000, Hamamatsu, Japan, October 26-28, 2000, Revised Papers, volume 2063
of Lecture Notes in Computer Science, pages 396–404. Springer, 2000. ISBN 3-540-43080-6.

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard Cyganiak, and Sebastian
Hellmann. Dbpedia - A crystallization point for the web of data. Journal of Web Semantics, 7(3):154–165, 2009.

Michael L. Littman, Greg A. Keim, and Noam M. Shazeer. A probabilistic approach to solving crossword puzzles.
Artificial Intelligence, 134(1-2):23–55, 2002.

BIBLIOGRAPHY 136

Marco Ernandes, Giovanni Angelini, and Marco Gori. Webcrow: A web-based system for crossword solving. In
Manuela M. Veloso and Subbarao Kambhampati, editors, Proceedings, The Twentieth National Conference on Artifi-
cial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh,
Pennsylvania, USA, pages 1412–1417. AAAI Press / The MIT Press, 2005. ISBN 1-57735-236-X.

Giovanni Semeraro, Marco de Gemmis, Pasquale Lops, and Pierpaolo Basile. An artificial player for a language
game. IEEE Intelligent Systems, 27(5):36–43, 2012.

Shyong K. Lam, David M. Pennock, Dan Cosley, and Steve Lawrence. 1 billion pages = 1 million dollars? mining the
web to play "who wants to be a millionaire?". In Christopher Meek and U�e Kjærul�, editors, UAI ’03, Proceedings
of the 19th Conference in Uncertainty in Artificial Intelligence, Acapulco, Mexico, August 7-10 2003, pages 337–345. Morgan
Kaufmann, 2003. ISBN 0-127-05664-5.

Anselmo Peñas, Eduard H. Hovy, Pamela Forner, Álvaro Rodrigo, Richard F. E. Sutcli�e, and Roser Morante.
QA4MRE 2011-2013: Overview of question answering for machine reading evaluation. In Pamela Forner, Hen-
ning Müller, Roberto Paredes, Paolo Rosso, and Benno Stein, editors, Information Access Evaluation. Multilinguality,
Multimodality, and Visualization - 4th International Conference of the CLEF Initiative, CLEF 2013, Valencia, Spain, September
23-26, 2013. Proceedings, volume 8138 of Lecture Notes in Computer Science, pages 303–320. Springer, 2013. ISBN
978-3-642-40801-4.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment challenge. In
Joaquin Quiñonero Candela, Ido Dagan, Bernardo Magnini, and Florence d’Alché-Buc, editors, Machine Learning
Challenges, Evaluating Predictive Uncertainty, Visual Object Classification and Recognizing Textual Entailment, First PASCAL
Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers, volume
3944 of Lecture Notes in Computer Science, pages 177–190. Springer, 2005. ISBN 3-540-33427-0.

Álvaro Rodrigo, Anselmo Peñas, and Felisa Verdejo. Overview of the answer validation exercise 2008. In Carol
Peters, Thomas Deselaers, Nicola Ferro, Julio Gonzalo, Gareth J. F. Jones, Mikko Kurimo, Thomas Mandl,
Anselmo Peñas, and Vivien Petras, editors, Evaluating Systems for Multilingual and Multimodal Information Access, 9th
Workshop of the Cross-Language Evaluation Forum, CLEF 2008, Aarhus, Denmark, September 17-19, 2008, Revised Selected
Papers, volume 5706 of Lecture Notes in Computer Science, pages 296–313. Springer, 2008. ISBN 978-3-642-04446-5.

Álvaro Rodrigo, Anselmo Peñas, and Felisa Verdejo. UNED at answer validation exercise 2007. In Carol Peters,
Valentin Jijkoun, Thomas Mandl, Henning Müller, Douglas W. Oard, Anselmo Peñas, Vivien Petras, and Diana
Santos, editors, Advances in Multilingual and Multimodal Information Retrieval, 8th Workshop of the Cross-Language Evaluation
Forum, CLEF 2007, Budapest, Hungary, September 19-21, 2007, Revised Selected Papers, volume 5152 of Lecture Notes in
Computer Science, pages 404–409. Springer, 2007. ISBN 978-3-540-85759-4.

Eric Breck, John D. Burger, Lisa Ferro, Lynette Hirschman, David House, Marc Light, and Inderjeet Mani. How
to evaluate your question answering system every day ... and still get real work done. In Proceedings of the Second
International Conference on Language Resources and Evaluation, LREC 2000, 31 May - June 2, 2000, Athens, Greece. European
Language Resources Association, 2000. ISBN 2-9517408-6-7.

Bernardo Magnini, Matteo Negri, Roberto Prevete, and Hristo Tanev. Is it the right answer? exploiting web redun-
dancy for answer validation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,
July 6-12, 2002, Philadelphia, PA, USA., pages 425–432. ACL, 2002.

Sanda M. Harabagiu and Steven J. Maiorano. Finding answers in large collections of texts: Paragraph indexing +
abductive inference. In Proceedings of the AAAI Fall Symposium on Question Answering, pages 63–71. AAAI, 1999.

Julio J. Castillo. The contribution of famaf at qa@clef 2008. answer validation exercise. In Peters and Ferro [2008].

Ingo Glöckner. University of hagen at CLEF 2008: Answer validation exercise. In Peters and Ferro [2008].

Kisuh Ahn, Johan Bos, David Kor, Malvina Nissim, Bonnie L. Webber, and James R. Curran. Question answering
with QED at TREC 2005. In Voorhees and Buckland [2005].

Christian Bizer. The emerging web of linked data. IEEE Intelligent Systems, 24(5):87–92, 2009.

Danica Damljanovic, Milan Agatonovic, and Hamish Cunningham. Freya: An interactive way of querying linked
data using natural language. In Raul Garcia-Castro, Dieter Fensel, and Grigoris Antoniou, editors, The Semantic
Web: ESWC 2011 Workshops - ESWC 2011 Workshops, Heraklion, Greece, May 29-30, 2011, Revised Selected Papers, volume
7117 of Lecture Notes in Computer Science, pages 125–138. Springer, 2011. ISBN 978-3-642-25952-4.

Vanessa Lopez, Miriam Fernández, Enrico Motta, and Nico Stieler. Poweraqua: Supporting users in querying and
exploring the semantic web. Semantic Web, 3(3):249–265, 2012.

E. Cabrio, A. Palmero Aprosio, J. Cojan, B. Magnini, F. Gandon, and A. Lavelli. QAKiS@QALD-2. In C. Unger,
P. Cimiano, V. Lopez, E. Motta, P. Buitelaar, and R. Cyganiak, editors, Proceedings of Interacting with Linked Data
(ILD 2012), Workshop Co-Located with EWSC 2012, volume 913, pages 87–95. CEUR Workshop Proceedings, 2012.

Nitish Aggarwal and Paul Buitelaar. A System Description of Natural Language Query Over DBpedia. In C. Unger,
P. Cimiano, V. Lopez, E. Motta, P. Buitelaar, and R. Cyganiak, editors, Proceedings of Interacting with Linked Data
(ILD 2012), Workshop Co-Located with ESWC 2012, volume 913, pages 96–99. CEUR Workshop Proceedings, 2012.

Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness using wikipedia-based explicit semantic
analysis. In Manuela M. Veloso, editor, IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007, pages 1606–1611, 2007.

Vanessa Lopez, Christina Unger, Philipp Cimiano, and Enrico Motta. Evaluating question answering over linked
data. Journal of Web Semantics, 21:3–13, 2013.

BIBLIOGRAPHY 137

Philipp Cimiano and Michael Minock. Natural language interfaces: What is the problem? - A data-driven quan-
titative analysis. In Helmut Horacek, Elisabeth Métais, Rafael Muñoz, and Magdalena Wolska, editors, Natural
Language Processing and Information Systems, 14th International Conference on Applications of Natural Language to Information
Systems, NLDB 2009, Saarbrücken, Germany, June 24-26, 2009. Revised Papers, volume 5723 of Lecture Notes in Computer
Science, pages 192–206. Springer, 2009. ISBN 978-3-642-12549-2.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from question-answer
pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, 18-21 October
2013, Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1533–
1544. ACL, 2013. ISBN 978-1-937284-97-8.

Joseph John Jr. Rocchio. Relevance feedback in information retrieval. In Gerard Salton, editor, The SMART Retrieval
System - Experiments in Automated Document Processing, pages 313–323. Prentice-Hall, Englewood Cli�s, NJ, 1971.

Federico Perea and Justo Puerto. Dynamic programming analysis of the TV game "who wants to be a millionaire?".
European Journal of Operational Research, 183(2):805–811, 2007.

Royce A. Jr. Singleton and Bruce C. Straits. Approaches to Social Research. Oxford University Press, New York, 1993.

Gareth J. F. Jones, Paraic Sheridan, Diane Kelly, Maarten de Rijke, and Tetsuya Sakai, editors. The 36th International
ACM SIGIR conference on research and development in Information Retrieval, SIGIR ’13, Dublin, Ireland - July 28 - August 01,
2013, 2013. ACM. ISBN 978-1-4503-2034-4.

Martin Braschler, Donna Harman, and Emanuele Pianta, editors. CLEF 2010 LABs and Workshops, Notebook Papers,
22-23 September 2010, Padua, Italy, volume 1176 of CEUR Workshop Proceedings, 2010. CEUR-WS.org. ISBN 978-88-
904810-0-0.

Marc Najork, Andrei Z. Broder, and Soumen Chakrabarti, editors. Proceedings of the International Conference on Web
Search and Web Data Mining, WSDM 2008, Palo Alto, California, USA, February 11-12, 2008, 2008. ACM.

Ellen M. Voorhees and Lori P. Buckland, editors. Proceedings of the Fourteenth Text REtrieval Conference, TREC 2005,
Gaithersburg, Maryland, November 15-18, 2005, volume Special Publication 500-266, 2005. National Institute of Stan-
dards and Technology (NIST).

William R. Hersh, Jamie Callan, Yoelle Maarek, and Mark Sanderson, editors. The 35th International ACM SIGIR
conference on research and development in Information Retrieval, SIGIR ’12, Portland, OR, USA, August 12-16, 2012, 2012.
ACM. ISBN 978-1-4503-1472-5.

Erhard W. Hinrichs and Dan Roth, editors. Proceedings of the 41st Annual Meeting of the Association for Computational
Linguistics, 7-12 July 2003, Sapporo Convention Center, Sapporo, Japan, 2003. ACL.

Sung-Hyon Myaeng, Douglas W. Oard, Fabrizio Sebastiani, Tat-Seng Chua, and Mun-Kew Leong, editors. Proceedings
of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2008,
Singapore, July 20-24, 2008, 2008. ACM. ISBN 978-1-60558-164-4.

Ellen M. Voorhees and Lori P. Buckland, editors. Proceedings of the Fifteenth Text REtrieval Conference, TREC 2006,
Gaithersburg, Maryland, November 14-17, 2006, volume Special Publication 500-272, 2006. National Institute of Stan-
dards and Technology (NIST).

Proceedings of the International Conference on Language Resources and Evaluation, LREC 2008, 26 May - 1 June 2008, Marrakech,
Morocco, 2008. European Language Resources Association.

Efthimis N. Efthimiadis, Susan T. Dumais, David Hawking, and Kalervo Järvelin, editors. SIGIR 2006: Proceed-
ings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle,
Washington, USA, August 6-11, 2006, 2006. ACM. ISBN 1-59593-369-7.

Olivier Chapelle, Yi Chang, and Tie-Yan Liu, editors. Proceedings of the Yahoo! Learning to Rank Challenge, held at ICML
2010, Haifa, Israel, June 25, 2010, volume 14 of JMLR Proceedings, 2011. JMLR.org.

Mário J. Silva, Alberto H. F. Laender, Ricardo A. Baeza-Yates, Deborah L. McGuinness, Bjørn Olstad, Øystein Haug
Olsen, and André O. Falcão, editors. Proceedings of the Sixteenth ACM Conference on Information and Knowledge Manage-
ment, CIKM 2007, Lisbon, Portugal, November 6-10, 2007, 2007. ACM. ISBN 978-1-59593-803-9.

William W. Cohen and Samuel Gosling, editors. Proceedings of the Fourth International Conference on Weblogs and Social
Media, ICWSM 2010, Washington, DC, USA, May 23-26, 2010, 2010. The AAAI Press.

Jimmy Huang, Nick Koudas, Gareth J. F. Jones, Xindong Wu, Kevyn Collins-Thompson, and Aijun An, editors.
Proceedings of the 19th ACM Conference on Information and Knowledge Management, CIKM 2010, Toronto, Ontario, Canada,
October 26-30, 2010, 2010. ACM. ISBN 978-1-4503-0099-5.

Craig Macdonald, Iadh Ounis, and Ian Ruthven, editors. Proceedings of the 20th ACM Conference on Information and
Knowledge Management, CIKM 2011, Glasgow, United Kingdom, October 24-28, 2011, 2011. ACM. ISBN 978-1-4503-0717-
8.

Alain Mille, Fabien L. Gandon, Jacques Misselis, Michael Rabinovich, and Ste�en Staab, editors. Proceedings of the
21st World Wide Web Conference, WWW 2012, Lyon, France, April 16-20, 2012 (Companion Volume), 2012. ACM. ISBN
978-1-4503-1230-1.

Jinpeng Huai, Robin Chen, Hsiao-Wuen Hon, Yunhao Liu, Wei-Ying Ma, Andrew Tomkins, and Xiaodong Zhang,
editors. Proceedings of the 17th International Conference on World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008,
2008. ACM. ISBN 978-1-60558-085-2.

Carol Peters and Nicola Ferro, editors. Working Notes for CLEF 2008 Workshop co-located with the 12th European Conference
on Digital Libraries (ECDL 2008) , Aarhus, Denmark, September 17-19, 2008, volume 1174 of CEUR Workshop Proceedings,
2008. CEUR-WS.org.

