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Agenda
1. Graph Representation Learning

2. Dish Recommendation on Uber Eats

3. Graph Learning on Uber Eats



Graph 
Representation 
Learning



Linked Open Data

Graph data

Social networks Biomedical networks

Information networks Internet Networks of neurons



Tasks on graphs

Node classification
Predict a type of a given node

Link prediction
Predict whether two nodes are linked

Community detection
Identify densely linked clusters of nodes

Network similarity
How similar are two (sub)networks



Define an encoder mapping from 
nodes to embeddings

Define a node similarity function based 
on the network structure

Optimize the parameters of the 
encoder so that:

Learning framework

embedding spaceoriginal graph



Simplest encoding approach: encoder is just an embedding-lookup

Algorithms like Matrix Factorization, Node2Vec, Deepwalk fall in this category

Embedding 
size

One column per node 

embedding 
matrix

embedding vector for a specific node

Shallow encoding



Shallow encoding limitations

O(|V|) parameters are needed, every node 
has its own embedding vector

Either not possible or very time consuming 
to generate embeddings for nodes not 
seen during training

Does not incorporate node features



Graph Neural Network
Key Idea: To obtain node representations, use a neural network to aggregate 
information from neighbors recursively by limited Breadth-FIrst Search (BFS)
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Neighborhood 
aggregation

Each Layer is one level of depth 
in the BFS

Nodes have embeddings at 
each layer

Layer 0 embedding of node v is 
its input feature xu

Layer k embeddings are hkv
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train with snapshot new node arrives generate embedding 
for new node

Inductive capability

In many real applications new nodes are often added to the graph

Need to generate embeddings for new nodes without retraining 

Hard to do with shallow methods



Dish Recommendation 
on Uber Eats



Suggested 
Dishes

Recommended Dishes
Carousel Picked for You











Graph Learning in 
Uber Eats



Users connected to dishes they have 
ordered in the last M days

Weights are frequency of orders

Graph properties

Graph is dynamic: new users 
and dishes are added every day

Each node has features, e.g. 
word2vec of dish names
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positive 
pair

negative
sample

margin

For dish recommendation we care about ranking, not actual similarity score

Max Margin Loss:

Max Margin Loss



New loss with Low Rank Positives
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Weighted pool aggregation

Aggregate neighborhood embeddings based on edge weight
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Model Test AUC

Previous 
production model 0.784

With graph 
embeddings 0.877

Offline evaluation

Trained the downstream Personalized 
Ranking Model using graph node 
embeddings

~12% improvement in test AUC over 
previous production model



Feature Importance

Graph learning cosine similarity is 
the top feature in the model 



Online evaluation

Ran a A/B test of the Recommended Dishes Carousel 
in San Francisco

Significant uplift in Click-Through Rate with respect to 
the previous production model

Conclusion: Dish Recommendations with graph 
learning features are live in San Francisco, soon 
everywhere else
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More Resources

Uber Eng Blog Post

Learn better representation in data scarcity 
regimes like small/new cities through 
meta-learning [NeurIPS Graph Representation 
Learning Workshop 2019]

https://eng.uber.com/uber-eats-graph-learning/
https://grlearning.github.io/papers/53.pdf
https://grlearning.github.io/papers/53.pdf
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