Enhancing Recommendations on Uber Eats with Graph Convolutional Networks

Ankit Jain/Piero Molino

ankit.jain/piero@uber.com

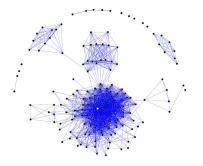
Uber Al

Agenda

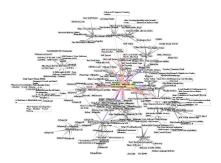
- 1. Graph Representation Learning
- 2. Dish Recommendation on Uber Eats
- 3. Graph Learning on Uber Eats

Graph Representation Learning

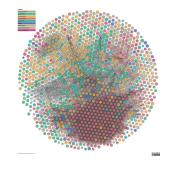
Graph data



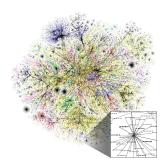
Social networks

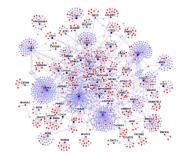


Information networks

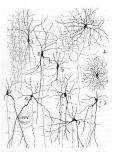


Linked Open Data





Biomedical networks



Networks of neurons

Internet

Tasks on graphs

Node classification

Predict a type of a given node

Link prediction

Predict whether two nodes are linked

Community detection

Identify densely linked clusters of nodes

Network similarity

How similar are two (sub)networks

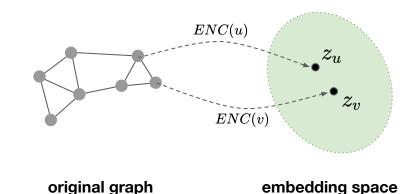
Learning framework

Define an encoder mapping from nodes to embeddings

Define a node similarity function based on the network structure

Optimize the parameters of the encoder so that:

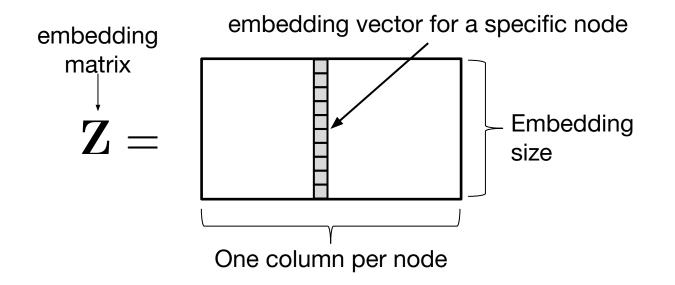
 $similarity(u,v)pprox z_v^+ z_u^-$



Shallow encoding

Simplest encoding approach: encoder is just an embedding-lookup

Algorithms like Matrix Factorization, Node2Vec, Deepwalk fall in this category



Shallow encoding limitations

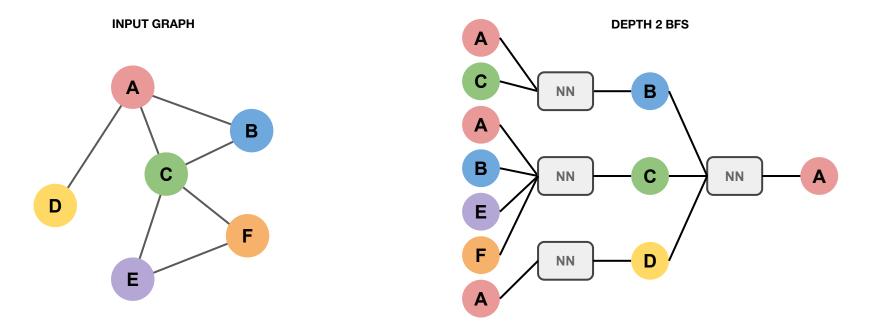
O(|V|) parameters are needed, every node has its own embedding vector

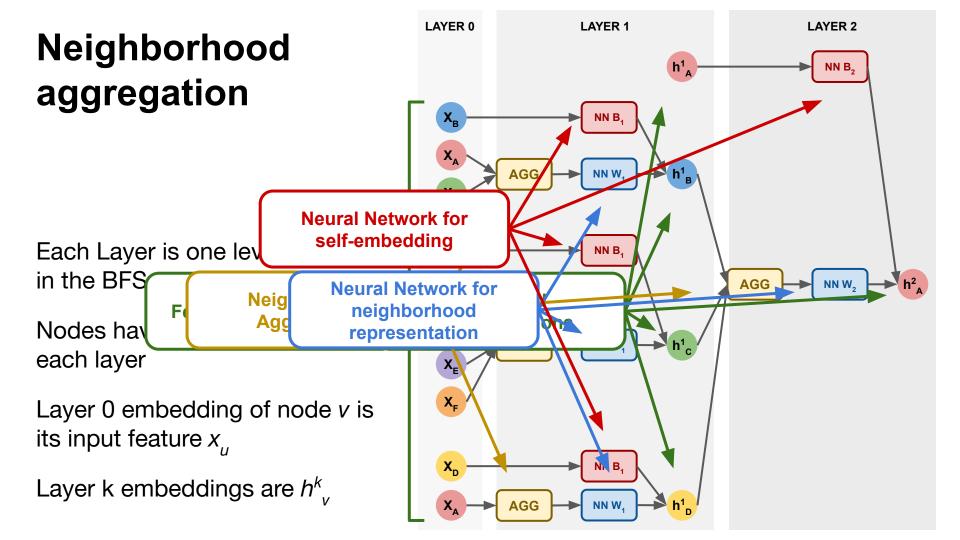
Either not possible or very time consuming to generate embeddings for nodes **not seen during training**

Does not incorporate **node features**

Graph Neural Network

Key Idea: To obtain node representations, use a neural network to aggregate information from neighbors recursively by limited Breadth-FIrst Search (BFS)



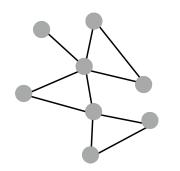


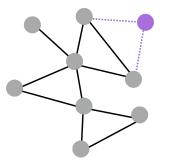
Inductive capability

In many real applications new nodes are often added to the graph

Need to generate embeddings for new nodes without retraining

Hard to do with shallow methods







train with snapshot

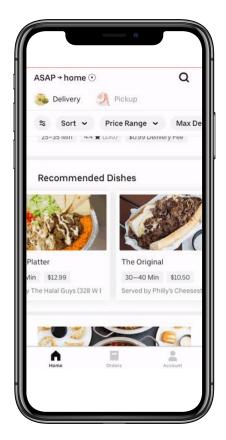
new node arrives

generate embedding for new node

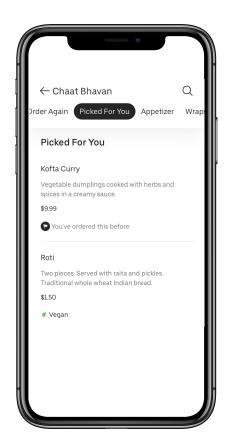
Dish Recommendation on Uber Eats

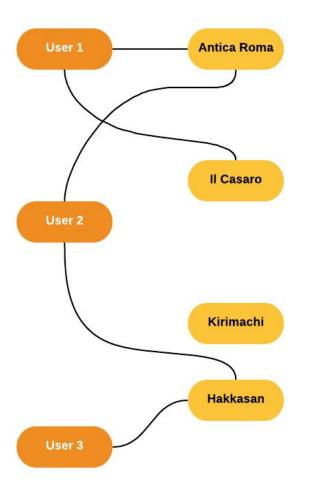
Suggested Dishes

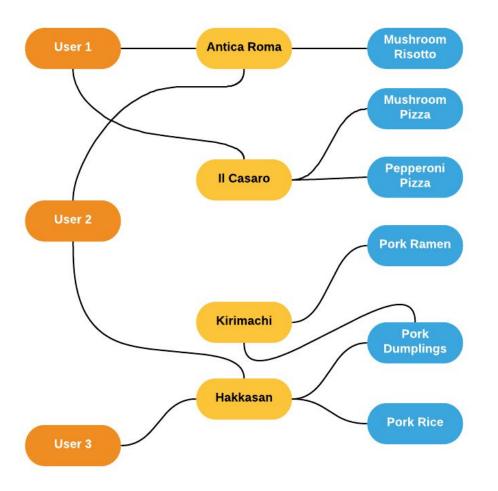
Recommended Dishes Carousel

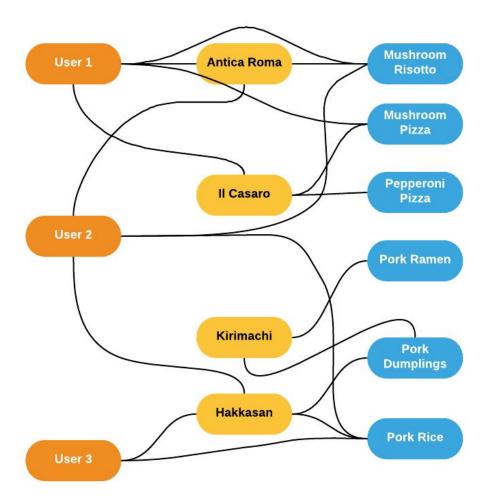


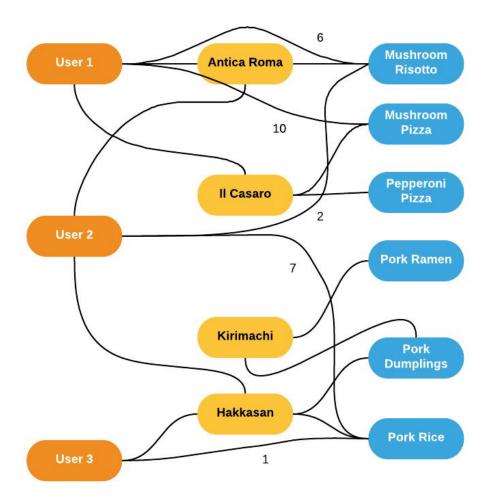
Picked for You











Graph Learning in Uber Eats

Bipartite graph for dish recommendation

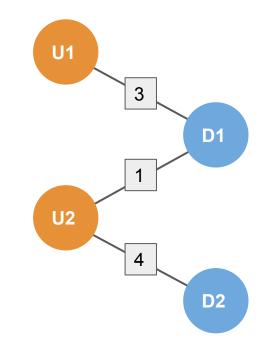
Users connected to dishes they have ordered in the last M days

Weights are frequency of orders

Graph properties

Graph is dynamic: new users and dishes are added every day

Each node has features, e.g. word2vec of dish names



Max Margin Loss

For dish recommendation we care about ranking, not actual similarity score

Max Margin Loss:

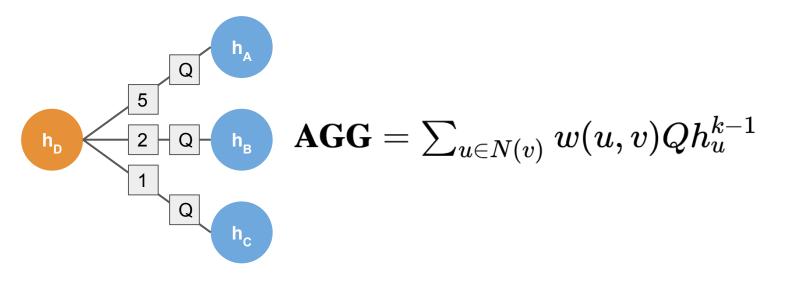
$$L = \sum_{(u,v)\in E} \max(0, -\frac{z_u z_v}{\uparrow} + \frac{z_u z_n}{\uparrow} + \frac{\Delta}{\uparrow})$$
positive negative margin pair sample

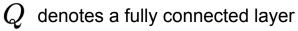
New loss with Low Rank Positives



Weighted pool aggregation

Aggregate neighborhood embeddings based on edge weight





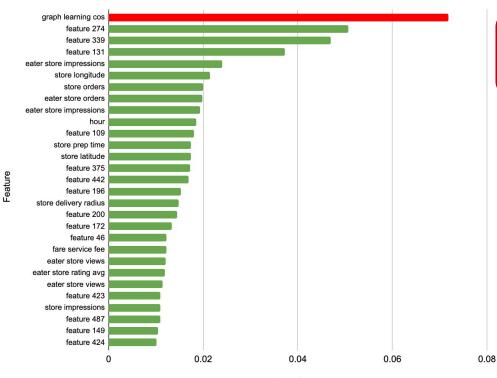
Offline evaluation

Trained the downstream Personalized Ranking Model using graph node embeddings

~12% improvement in test AUC over previous production model

Model	Test AUC
Previous production model	0.784
With graph embeddings	0.877

Feature Importance



Graph learning cosine similarity is the top feature in the model

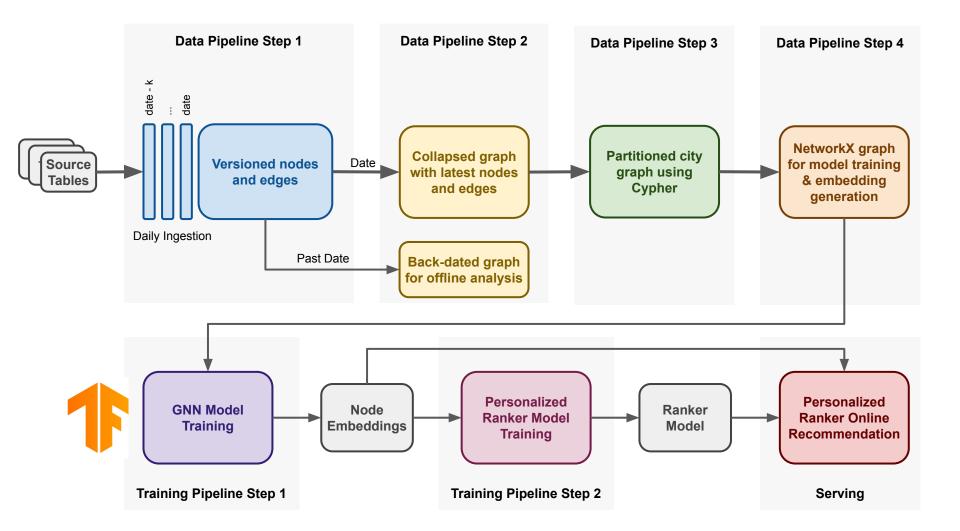
Importance

Online evaluation

Ran a A/B test of the Recommended Dishes Carousel in San Francisco

Significant uplift in Click-Through Rate with respect to the previous production model

Conclusion: Dish Recommendations with graph learning features are live in San Francisco, soon everywhere else



More Resources

Uber Eng Blog Post

Learn better representation in data scarcity regimes like small/new cities through meta-learning [<u>NeurIPS Graph Representation</u> <u>Learning Workshop 2019</u>]

Ankit Jain	Isaac Liu	Ankur Sarda
Piero Molino	Long Tao	Jimin Jia
Jan Pedersen	Nathan Berrebbi	Santosh Golecha
Ramit Hora	Alex Danilychev	

Thank you for your attention

Enhance Recommendations in Uber Eats with Graph Convolutional Networks

Ankit Jain/Piero Molino

ankit.jain/piero@uber.com

Uber Al

Uber

Proprietary © 2019 Uber Technologies, Inc. All rights reserved. No part of this document may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from Uber. This document is intended only for the use of the individual or entity to whom it is addressed and contains information that is privileged, confidential or otherwise exempt from disclosure under applicable law. All recipients of this document are notified that the information contained herein includes proprietary and confidential information of Uber, and recipient may not make use of, disseminate, or in any way disclose this document or any of the enclosed information to any person other than employees of addressee to the extent necessary for consultations with authorized personnel of Uber.

References

[1] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton and Jure Leskovec: <u>Graph</u> <u>Convolutional Neural Networks for Web-Scale Recommender Systems</u>, KDD 2018

[2] Bryan Perozzi, Rami Al-Rfou' and Steven Skiena: <u>DeepWalk: online learning of social representations</u>.KDD 2014

[3] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan and Qiaozhu Mei: LINE: Large-scale Information Network Embedding. WWW 2015

[4] Aditya Grover, Jure Leskovec: node2vec: Scalable Feature Learning for Networks. KDD 2016

[5] Marco Gori, Gabriele Monfardini and Franco Scarselli: <u>A new model for learning in graph domains</u>. IJCNN 2005

[6] William L. Hamilton, Rex Ying and Jure Leskovec: <u>Inductive Representation Learning on Large Graphs</u>. NIPS 2017

[7] Joey Bose, Ankit Jain, Piero Molino and Will Hamilton: <u>Meta-Graph: Few shot Link Prediction via</u> <u>Meta-Learning</u>. Graph Representation Learning Workshop @ NeurIPS 2019