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Learning



Graph data

Information networks Internet Networks of neurons



Tasks on graphs

Node classification
Predict a type of a given node

Link prediction
Predict whether two nodes are linked

Community detection
|dentify densely linked clusters of nodes

Network similarity
How similar are two (sub)networks



Learning framework

Define an encoder mapping from
nodes to embeddings

Define a node similarity function based

on the network structure

Optimize the parameters of the
encoder so that:

similarity(u,v) ~ z
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Shallow encoding

Simplest encoding approach: encoder is just an embedding-lookup

Algorithms like Matrix Factorization, Node2Vec, Deepwalk fall in this category

embedding embedding vecto; for a specific node
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Shallow encoding limitations

O(|V|) parameters are needed, every node
has its own embedding vector

Either not possible or very time consuming
to generate embeddings for nodes not
seen during training

Does not incorporate node features



Graph Neural Network

Key Idea: To obtain node representations, use a neural network to aggregate
information from neighbors recursively by limited Breadth-FIrst Search (BFS)
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Inductive capability

In many real applications new nodes are often added to the graph
Need to generate embeddings for new nodes without retraining

Hard to do with shallow methods
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Dish Recommendation
on Uber Eats
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Kofta Curry

Recommended Dishes Vegetable dumplings cooked with herbs and

spices in a creamy sauce.

$9.99

OYou‘ve ordered this before

Roti

The Original
Two pieces. Served with raita and pickles.

30-40 Min  $1050 Traditional whole wheat Indian bread
$150

Vegan
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Graph Learning in
Uber Eats



Bipartite graph for dish recommendation

Users connected to dishes they have
ordered in the last M days

N
Weights are frequency of orders ° N
Graph properties 1 ~
b
Graph is dynamic: new users
and dishes are added every day N 4
N

Each node has features, e.g.
word2vec of dish names



Max Margin Loss

For dish recommendation we care about ranking, not actual similarity score

Max Margin Loss:

L= ) max(0,—2z,2, + 242, + Q)
(u,v)EE 4 $ $

positive negative  margin
pair sample



New loss with Low Rank Positives

D

Positive Negative Low Rank Positive

y —ZuZy + Zuzn + Ap)+

oy max (0, —zy 2y + 221 + A})

A1<An



Weighted pool aggregation

Aggregate neighborhood embeddings based on edge weight

< 2 Ha} AGG = ),y w(u, v)QhE1

Q denotes a fully connected layer



Offline evaluation

Trained the downstream Personalized
Ranking Model using graph node
embeddings

~12% improvement in test AUC over
previous production model

Model Test AUC

Previous

production model 0.784

With graph

embeddings 0.877



Feature

graph learning cos
feature 274

feature 339

feature 131

eater store impressions
store longitude

store orders

eater store orders
eater store impressions
hour

feature 109

store prep time

store latitude

feature 375

feature 442

feature 196

store delivery radius
feature 200

feature 172

feature 46

fare service fee
eater store views
eater store rating avg
eater store views
feature 423

store impressions
feature 487

feature 149

feature 424

Feature Importance

0.04

Importance

0.08

Graph learning cosine similarity is
the top feature in the model




Online evaluation

Ran a A/B test of the Recommended Dishes Carousel
in San Francisco

Significant uplift in Click-Through Rate with respect to
the previous production model

Conclusion: Dish Recommendations with graph
learning features are live in San Francisco, soon
everywhere else



Data Pipeline Step 1 Data Pipeline Step 2

Data Pipeline Step 3

Data Pipeline Step 4
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More Resources

Uber Eng Blog Post

Learn better representation in data scarcity
regimes like small/new cities through
meta-learning [NeurlPS Graph Representation
Learning Workshop 2019]



https://eng.uber.com/uber-eats-graph-learning/
https://grlearning.github.io/papers/53.pdf
https://grlearning.github.io/papers/53.pdf
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