
Indexing Vector Spaces
Graphs Search Engines
Piero Molino
XY Lab

Relevance for
New Publishing
Search Engines can be considered publishers

They select, filter, choose and sometimes create the
content they give as result to queries

From the user point of view, the search process is a
blackbox, like magic

Understanding it increases the awareness of the
risks it has and could help bypassing or hacking it

Information Retrieval

Let a collection of unstructured information (set of
texts)

Let an information need (query)

Objective: Find items of the collection that answers
the information need

Representation

Simple/naive assumption

A text can be represented by the words it contains

Bag-of-words model

Bag of Words

"Me and John and Mary attend this lab"

!
Me:1

Bag of Words

"Me and John and Mary attend this lab"

!
Me:1 and:1

Bag of Words

"Me and John and Mary attend this lab"

!
Me:1 and:1 John:1

Bag of Words

"Me and John and Mary attend this lab"

!
Me:1 and:2 John:1

Bag of Words

"Me and John and Mary attend this lab"

!
Me:1 and:2 John:1 Mary:1

Bag of Words

"Me and John and Mary attend this lab"

!
Me:1 and:2 John:1 Mary:1 attend:1

Bag of Words

"Me and John and Mary attend this lab"

!
Me:1 and:2 John:1 Mary:1 attend:1 this:1

Bag of Words

"Me and John and Mary attend this lab"

!
Me:1 and:2 John:1 Mary:1 attend:1 this:1 lab:1

Inverted index

To access the documents, we build an index, just like
humans do

Inverted Index: word-to-document

"Indice Analitico"

Example

doc1:"I like football"

doc2:"John likes football"

doc3:"John likes basketball"

I → doc1

like → doc1

football → doc1 doc2

John → doc2 doc3

likes → doc2 doc3

basketball → doc3

Query

Information need represented with the same bag-of-
words model

Who likes basketball? → Who:1 likes:1 basketball:1

Retrieval
Who:1 likes:1 basketball:1

I → doc1

like → doc1

football → doc1 doc2

John → doc2 doc3

likes → doc2 doc3

basketball → doc3

Result: [doc2, doc3]!
(without any order... or no?)

Boolean Model

doc3 contains both "likes" and "basketball", 2/3 of the input
query terms, doc2 contains only 1/3

Boolean Model: represents only presence or absence of
query words and ranks document according to how many
query words they contain

Result: [doc3, doc2]!
(with this precise order)

likes → doc2 doc3

basketball → doc3

Vector Space Model
Represents documents and words as vectors or
points in a (multidimensional) geometrical space

We build a term x documents matrix

doc1 doc2 doc3
I 1 0 0
like 1 0 0

football 1 1 0
John 0 1 1
likes 0 1 1

basketball 0 0 1

Graphical Representation

likes

fo
ot

ba
ll

1

1
0

doc1

doc2

doc3

Tf-idf

The cells of the matrix contain the frequency of a
word in a document (term frequency tf)

This value can be counterbalanced by the number
of documents that contain the word (inverse
document frequency idf)

The final weight is called tf-idf

Tf-idf Example 1

"Romeo" is found 700 times in the document "Romeo
and Juliet" and also in 7 other plays

The tf-idf of "Romeo" in the document "Romeo and
Juliet" is 7000x(1/7)=100

Tf-idf Example 2

"and" is found 1000 times in the document "Romeo
and Juliet" and also in 10000 other plays

The tf-idf of "and" in the document "Romeo and Juliet"
is 1000x(1/10000)=0.1

Similarity

Queries are like an additional column in matrix

We can compute a similarity between document and
queries

Similarity

0

doc1

doc2

doc3

query

Euclidean Distance

Similarity

0

doc1

doc2

doc3

query

Vector length normalization
Projection of one normalized
vector over another = cos(θ)

θ

Cosine Similarity

The cosine of the angle between two vectors is a
measure of how similar two vectors are

As the vectors represents documents and queries,
the cosine is a measure of similarity of how similar is
a document with respect to the query

Ranking with
Cosine Similarity

Shows how query and documents are correlated

1 = maximum correlation, 0 = no correlation, -1 =
negative correlation

The documents obtained from the inverted index are
ranked according to their cosine similarity wrt. the
query

Ranking on the web

In the web documents (webpages) are connected to
each other by hyperlinks

Is there a way to exploit this topology?

PageRank algorithm (and several others)

The web as a graph

2

6

3

7

5

4

1

Webpage

Hyperlink

Matrix Representation
1 2 3 4 5 6 7

1 1/2 1/2

2 1/2 1/2

3 1

4 1/3 1/3 1/3

5 1/2 1/2

6 1/2 1/2

7 1

Simulating Random Walks
e = random vector, can be interpreted as how important
is a node in the network

Es. e = 1:0.5, 2:0.5, 3:0.5, 4:0.5, ...

A = the matrix

e = e · A, repeatedly is like simulating walking randomly
on the graph

The process converges to a vector e where each value
represents the importance in the network

Random Walks

2

6

3

7

5

4

1

Webpage

Hyperlink

Active

Random Walks

2

6

3

7

5

4

1

Webpage

Hyperlink

Active

Random Walks

2

6

3

7

5

4

1

Webpage

Hyperlink

Active

Random Walks

2

6

3

7

5

4

1

Webpage

Hyperlink

Active

Random Walks

2

6

3

7

5

4

1

Webpage

Hyperlink

Active

Importance - Authority

Webpage

Hyperlink

2

6

3

7

5

4

1

Importance (value in e)

Ranking with PageRank
I → doc1

like → doc1

football → doc1 doc2

John → doc2 doc3

likes → doc2 doc3

basketball → doc3

doc1 → 0.3

doc2 → 0.1

doc3 → 0.5

e

The inverted index gives doc2 and doc3
Using the importance in e for ranking
Result: [doc3, doc2] (ordered list)

Real World Ranking

Real word search engines exploit Vector-Space-
Model-like approaches, PageRank-like approaches
and several others

They balance all the different factors observing what
webpage you click on after issuing a query and using
them as examples for a machine learning algorithm

Machine Learning
A machine learning algorithm works like a baby

You give him examples of what is a dog and what is
a cat

He learns to look at the pointy ears, the nose and
other aspects of the animals

When he sees a new animal he says "cat" or "dog"
depending on his experience

Learning to Rank
The different indicators of how good a webpage for
a query is (cosine similarity, PageRank, etc.) are like
the nose, the tail and the ears of the animal

Instead of cat and dog, the algorithm classifies
relevant or non-relevant!

When you issue a query and click on a result it is
marked as relevant, otherwise it is considered non-
relevant

Issues

Among the different indicators there are a lot of
contextual ones

Where you issue the query from, who you are, what
you visited before, what result you clicked on
before, ...

This makes the result for each person, in each place,
in different moments in time, different

The filter bubble

A lot of diverse content is filtered from you

The search engine shows you what it thinks you will
be interested on, based on all this contextual factors

Lack of transparency of the search process

A way out of the bubble? Maybe favoring serendipity

Thank you
for your attention

