Indexing Vector Spaces Graphs Search Engines

Piero Molino XY Lab

Search Engines can be considered **publishers**

They <u>select</u>, <u>filter</u>, <u>choose</u> and sometimes <u>create</u> the content they give as result to queries

From the user point of view, the search process is a **blackbox**, like magic

Understanding it increases the **awareness of the risks** it has and could help bypassing or hacking it

Information Retrieval

Let a collection of **unstructured information** (set of texts)

Let an **information need** (query)

Objective: Find items of the collection that answers the information need

Simple/naive assumption

A text can be represented by the words it contains

Bag-of-words model

Me:1 and:1 John:1

Me:1 and:2 John:1

Me:1 and:2 John:1 Mary:1

Me:1 and:2 John:1 Mary:1 attend:1

Me:1 and:2 John:1 Mary:1 attend:1 this:1

Me:1 and:2 John:1 Mary:1 attend:1 this:1 lab:1

To access the documents, we build an **index**, just like humans do

Inverted Index: word-to-document

"Indice Analitico"

<u>doc1</u>:"I like football"

doc2:"John likes football"

doc3:"John likes basketball"

	\rightarrow	doc1	
like	→	doc1	
football		doc1	doc2
John	\rightarrow	doc2	doc3
likes	\rightarrow	doc2	doc3
basketball	→	doc3	

Information need represented with the same bag-ofwords model

Who likes basketball? → Who:1 likes:1 basketball:1

Who:1 likes:1 basketball:1

		doc1	
like		doc1	
football		doc1	doc2
John		doc2	doc3
likes	→	doc2	doc3
basketball	→	doc3	

Result: [doc2, doc3] (without any order... or no?)

Boolean Model

likes	→	doc2	doc3
basketball		doc3	

doc3 contains both "likes" and "basketball", 2/3 of the input query terms, doc2 contains only 1/3

Boolean Model: represents only presence or absence of query words and ranks document according to how many query words they contain

Result: [doc3, doc2]

(with this precise order)

Vector Space Model

Represents documents and words as **vectors** or points in a (multidimensional) geometrical space

We build a term x documents matrix

	doc1	doc2	doc3
L. L.	1	0	0
like	1	0	0
football	1	1	0
John	0	1	1
likes	0	1	1
basketball	0	0	1

Graphical Representation

The cells of the matrix contain the <u>frequency of a</u> word in a document (term frequency tf)

This value can be **counterbalanced** by the <u>number</u> <u>of documents that contain the word</u> (inverse document frequency idf)

The final weight is called **tf-idf**

"Romeo" is found 700 times in the document "Romeo and Juliet" and also in 7 other plays

The tf-idf of "Romeo" in the document "Romeo and Juliet" is 7000x(1/7)=100

"and" is found 1000 times in the document "Romeo and Juliet" and also in 10000 other plays

The tf-idf of "and" in the document "Romeo and Juliet" is 1000x(1/10000)=0.1

Queries are like an <u>additional column</u> in matrix

We can compute a **similarity** between document and queries

Euclidean Distance

The **cosine** of the angle between two vectors is a measure of <u>how similar two vectors are</u>

As the vectors represents documents and queries, the cosine is a measure of similarity of how similar is a document with respect to the query

Ranking with Cosine Similarity

Shows how query and documents are **correlated**

1 = maximum correlation, 0 = no correlation, -1 = negative correlation

The documents obtained from the inverted index are **ranked** according to their **cosine similarity** wrt. the query

Ranking on the web

- In the web documents (webpages) are **connected** to each other by <u>hyperlinks</u>
- Is there a way to exploit this topology?
- PageRank algorithm (and several others)

The web as a graph

Hyperlink

Matrix Representation

	1	2	3	4	5	6	7
1		1/2		1/2			
2	1/2			1/2			
3				1			
4			1/3		1/3		1/3
5				1/2		1/2	
6				1/2	1/2		
7						1	

Simulating Random Walks

e = random vector, can be interpreted as **how important** is a node in the network

Es. *e* = 1:0.5, 2:0.5, 3:0.5, 4:0.5, ...

A =the matrix

 $e = e \cdot A$, repeatedly is like <u>simulating walking randomly</u> on the graph

The process **converges** to a vector *e* where each value represents the **importance** in the network

· Hyperlink

- Hyperlink

· Hyperlink

· Hyperlink

- Hyperlink

Importance - Authority

Hyperlink

Ranking with PageRank

	\rightarrow	doc1			е		
like	\rightarrow	doc1		-	doc1		0.3
football	\rightarrow	doc1	doc2		doc2	\rightarrow	0.1
John	\rightarrow	doc2	doc3		doc3		0.5
likes	\rightarrow	doc2	doc3				
basketball	\rightarrow	doc3		-			

The inverted index gives doc2 and doc3 Using the importance in *e* for ranking Result: [doc3, doc2] (ordered list)

Real World Ranking

Real word search engines exploit Vector-Space-Model-like approaches, PageRank-like approaches and **several** others

They balance all the different factors observing what webpage you click on after issuing a query and using them as examples for a <u>machine learning</u> algorithm

Machine Learning

A machine learning algorithm works like a **baby**

You give him **examples** of what is a dog and what is a cat

He **learns** to look at the <u>pointy ears</u>, the <u>nose</u> and <u>other aspects</u> of the animals

When he sees a **new animal** he says "cat" or "dog" depending on his **experience**

Learning to Rank

The different **indicators** of how good a webpage for a query is (cosine similarity, PageRank, etc.) are like the nose, the tail and the ears of the animal

Instead of cat and dog, the algorithm classifies relevant or non-relevant

When you issue a query and click on a result it is marked as **relevant**, otherwise it is considered **non-relevant**

Among the different indicators there are a lot of **contextual** ones

Where you issue the query from, who you are, what you visited before, what result you clicked on before, ...

This makes the result for each person, in each place, in different moments in time, **different**

The filter bubble

A lot of diverse content is **filtered** from you

The search engine shows you what it thinks you will be interested on, based on all this contextual factors

Lack of transparency of the search process

A way out of the bubble? Maybe favoring serendipity

Thank you for your attention