
Past, Present and Future

Piero Molino

Word Embeddings

Motivation
Word Embeddings: hot trend in NLP
(Post-word2vec era, 2013+)

Many researchers and practitioner are
oblivious of previous work in computer
science, cognitive science and
computational linguistics (Pre-word2vec
era: up to 2013)

Delays progress due to reinventing the
wheel + many lessons to be learned

Goal

Overview* of the history of the field to
start building on existing knowledge

Give some hints on future directions

*Not complete overview, but a useful starting point for exploration

Outline

1. Linguistic background: Structuralism

2. Distributional Semantics

3. Methods overview

4. Open issues and current trends

Terminology
Word Embeddings, Distributed
Representations, Word Vectors, Distributional
Semantic Models, Distributional
Representations, Semantic Vector Space, Word
Space, Semantic Space, Geometrical model of
Meaning, Context-theoretic models, Corpus-
based semantics, Statistical semantics

They all mean (almost) the same thing

Distributional Semantic Models →
Computational Linguistics literature

Word Embeddings → Neural Networks
literature

Structuralism

- Simon Blackburn, Oxford Dictionary of Philosophy, 2008

“The belief that phenomena of human life are not
intelligible except through their interrelations.

These relations constitute a structure,
and behind local variations in the surface phenomena

there are constant laws of abstract culture”

Structuralism

Origins of Structuralism

Ferdinand de Saussure, Cours de linguistique
générale, 1916

Published posthumous from notes of his students

Previous ideas close to structuralism:

• Wilhelm von Humboldt, Über den Dualis,
1828

• Wilhelm von Humboldt, Über die
Verschiedenheit des menschlichen
Sprachbaues, 1836

• Ferdinand de Saussure, Mémoire sur le
système des primitif voyelles dans les langues
indo-européennes, 1879

Structuralism
and Semiotics

Langue vs Parole

Sign, Signifier, Signified

Different languages use different
signifiers for the same signified → the
choice of signifiers is arbitrary

Meaning of signs is defined by their
relationships and contrasts with other
signs

Sign
Grounded in a

cultural system

Signifier
Expressive elements

word
color
images
scent

Signified
Referent meaning

denoted object
idea
cultural symbol
ideology

Meaning of signs is defined by
their relationships and
contrasts with other signs

Linguistic relationships

Paradigmatic: relationship between
words that can be substituted for each
other in the same position within a given
sentence

Syntagmatic: relationship a word has
with other words that surround it

Originally de Saussure used the term
"associative", the term "paradigmatic" was
introduced by Louis Hjelmslev, Principes
de grammaire générale, 1928

the plays

boy jumps

talks

man

Syntagmatic
in presentia

Paradigm
atic

in absentia

Paradigmatic

HyponymySynonymy

Antonymy

Feline

Tiger Lion Hyponym

HypernymBubbling Effervescent Sparkling

Hot Cold

Syntagmatic

Collocation Colligation

against the law

become law

enforcementlaw

is passedlaw

VERB past time

saved

ADJECTIVE time

spent
wasted

half
extra
full

sp
or

t
no

rm
al

Distributionalism

American structuralist branch

Leonard Bloomfield, Language, 1933

Zellig Harris. Methods in Structural
Linguistics, 1951

Zellig Harris, Distributional Structure, 1954

Zellig Harris, Mathematical Structure of
Language, 1968

- Ludwig Wittgenstein, Philosophical Investigation, 1953

"The meaning of a word
is its use in the language"

Philosophy of Language

- J.R. Firth, Papers in Linguistics,1957

"You shall know a word
by the company it keeps"

Corpus Linguistics

Other relevant work

Willard Van Orman Quine,
Word and Object, 1960

Margaret Masterman,
The Nature of a Paradigm,
1965

Distributional Semantics

Distributional Hypothesis

The degree of semantic similarity between two
linguistic expressions A and B is a function of the
similarity of the linguistic contexts in which A and B
can appear

First formulation by Harris, Charles, Miller, Firth or Wittgenstein?

– McDonald and Ramscar, 2001

We found a little, hairy wampimuk
sleeping behind the tree

He filled the wampimuk, passed
it around and we all drunk some

– McDonald and Ramscar, 2001

We found a little, hairy wampimuk
sleeping behind the tree

He filled the wampimuk, passed
it around and we all drunk some

Distributional Semantic Model

1. Represent words through
vectors recording their co-
occurrence counts with context
elements in a corpus  

2. (Optionally) Apply a re-weighting
scheme to the resulting co-
occurrence matrix  

3. (Optionally) Apply
dimensionality reduction
techniques to the co-occurrence
matrix  

4. Measure geometric distance of
word vectors as proxy to
semantic similarity /
relatedness  

Example
Target: a specific word

Context: noun and verbs in the same
sentence

The dog barked in the park. The owner of
the dog put him on the leash since he
barked.

word count
bark 2
park 1
leash 1

owner 1

bark

leash

park

dog

Contexts
Ta

rg
et

s

Example

leash walk run owner leg bark

dog 3 5 1 5 4 2

cat 0 3 3 1 5 0

lion 0 3 2 0 1 0

light 0 0 1 0 0 0

dark 1 0 0 2 1 0

car 0 0 4 3 0 0

Example
Use cosine similarity as a measure of
relatedness

bark

leash

park

dog

cat

car

cos ✓ =
x · y

kxkkyk =

Pn
i=1 xiyipPn

i=0 x
2
i

pPn
i=0 y

2
i

✓cos ✓

Similarity and Relatedness

Semantic similarity
words sharing salient attributes /
features
• synonymy (car / automobile)
• hypernymy (car / vehicle)
• co-hyponymy (car / van / truck)

Semantic relatedness
words semantically associated
without being necessarily similar
• function (car / drive)
• meronymy (car / tyre)
• location (car / road)
• attribute (car / fast)

(Budansky and Hirst, 2006)

Context
The meaning of a word can be defined in terms of its context (properties,
features)

• Other words in the same document / paragraph /
sentence

• Words in the immediate neighbors

• Words along dependency paths

• Linguistic patterns

• Predicate-Argument structures

• Frames

• Hand crafted features

Any process that builds a structure on sentences can be used as a source
for properties

First attempt in 1960s in Charles Osgood’s semantic
differentials, also used in first connectionist AI
approaches in the 1980s

Context Examples
Document

DOC1: The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It’s midsummer;
the living room has its instruments and other objects in each of its corners.

1

2

Context Examples
Wide window

DOC1: The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It’s midsummer;
the living room has its instruments and other objects in each of its corners.

1

2

Context Examples
Wide window (content words)

DOC1: The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It’s midsummer;
the living room has its instruments and other objects in each of its corners.

1

1

2

2

1

2

Context Examples
Small window (content words)

DOC1: The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It’s midsummer;
the living room has its instruments and other objects in each of its corners.

1 12

2

1

2

Context Examples
PoS coded content lemmas

1

1

2

2

1

2
DOC1: The silhouette/N of the sun beyond a wide-open/A bay/N on the
lake/N; the sun still glitters/V although evening/N has arrive/V in Kuhmo.
It’s midsummer; the living room has its instruments and other objects in
each of its corners.

Context Examples
PoS coded content lemmas filtered by syntactic path

DOC1: The silhouette/N of the sun beyond a wide-open bay on the lake; the

sun still glitters/V although evening has arrived in Kuhmo. It’s midsummer;

the living room has its instruments and other objects in each of its corners.

PPDEP

SUBJ

Context Examples
Syntactic path coded lemmas

DOC1: The silhouette/N_PPDEP of the sun beyond a wide-open bay on the lake;

the sun still glitters/V_SUBJ although evening has arrived in Kuhmo. It’s

midsummer; the living room has its instruments and other objects in each of its

corners.

PPDEP

SUBJ

Effect of Context
Neighbors of dog in BNC Corpus

2-word window

cat 
horse 

fox 
pet 

rabbit 
pig 

animal
mongrel

sheep 
pigeon

More paradigmatic More syntagmatic

30-word window

kennel
puppy
pet 
bitch
terrier 
rottweiler
canine 
cat 
bark 
alsatian

5-word window

nondeterministic
non-deterministic
computability
deterministic
finite-state

Syntactic dependencies

Pauling
Hotelling

Heting
Lessing

Hamming

Effect of Context
Neighbors of Turing in Wikipedia

Co-hyponyms
Paradigmatic

Topically related
Syntagmatic

Weighting Schemes

So far we used raw counts

Several other options for populating the
target x context matrix are available

In most cases Positive Pointwise Mutual
Information is the best choice

Kiela and Clark, A systematic study of
Semantic Vector Space Parameters, 2014,
is a good review

Measure Definition

Euclidean 1

1+
pPn

i=1(ui�vi)2

Cityblock 1
1+

Pn
i=1 |ui�vi|

Chebyshev 1
1+maxi |ui�vi|

Cosine u·v
|u||v|

Correlation (u�µu)·(v�µv)
|u||v|

Dice 2
Pn

i=0 min(ui,vi)Pn
i=0 ui+vi

Jaccard u·vPn
i=0 ui+vi

Jaccard2
Pn

i=0 min(ui,vi)Pn
i=0 max(ui,vi)

Lin
Pn

i=0 ui+vi
|u|+|v|

Tanimoto u·v
|u|+|v|�u·v

Jensen-Shannon Div 1�
1
2 (D(u||u+v

2)+D(v||u+v
2))

p
2 log 2

↵-skew 1� D(u||↵v+(1�↵)u)p
2 log 2

Table 2: Similarity measures between vectors v
and u, where vi is the ith component of v

whether removing more context words, based on
a frequency cut-off, can improve performance.

3 Experiments

The parameter space is too large to analyse ex-
haustively, and so we adopted a strategy for how
to navigate through it, selecting certain parame-
ters to investigate first, which then get fixed or
“clamped” in the remaining experiments. Unless
specified otherwise, vectors are generated with the
following restrictions and transformations on fea-
tures: stopwords are removed, numbers mapped
to ‘NUM’, and only strings consisting of alphanu-
meric characters are allowed. In all experiments,
the features consist of the frequency-ranked first n
words in the given source corpus.

Four of the five similarity datasets (RG, MC,
W353, MEN) contain continuous scales of sim-
ilarity ratings for word pairs; hence we follow
standard practice in using a Spearman correlation
coefficient ⇢s for evaluation. The fifth dataset
(TOEFL) is a set of multiple-choice questions,
for which an accuracy measure is appropriate.
Calculating an aggregate score over all datasets
is non-trivial, since taking the mean of correla-
tion scores leads to an under-estimation of per-
formance; hence for the aggregate score we use
the Fisher-transformed z-variable of the correla-

Scheme Definition

None wij = fij

TF-IDF wij = log(fij)⇥ log(N
nj

)

TF-ICF wij = log(fij)⇥ log(N
fj
)

Okapi BM25 wij =
fij

0.5+1.5⇥
fj
fj
j

+fij
log

N�nj+0.5

fij+0.5

ATC wij =
(0.5+0.5⇥

fij
maxf

) log(N
nj

)
rPN

i=1[(0.5+0.5⇥
fij

maxf
) log(N

nj
)]2

LTU wij =
(log(fij)+1.0) log(N

nj
)

0.8+0.2⇥fj⇥ j
fj

MI wij = log
P (tij |cj)

P (tij)P (cj)

PosMI max(0,MI)

T-Test wij =
P (tij |cj)�P (tij)P (cj)p

P (tij)P (cj)

�2 see (Curran, 2004, p. 83)

Lin98a wij =
fij⇥f

fi⇥fj

Lin98b wij = �1⇥ log
nj

N

Gref94 wij =
log fij+1

lognj+1

Table 3: Term weighting schemes. fij denotes the
target word frequency in a particular context, fi
the total target word frequency, fj the total context
frequency, N the total of all frequencies, nj the
number of non-zero contexts. P (tij |cj) is defined
as fij

fj
and P (tij) as fij

N .

tion datasets, and take the weighted average of
its inverse over the correlation datasets and the
TOEFL accuracy score (Silver and Dunlap, 1987).

3.1 Vector size

The first parameter we investigate is vector size,
measured by the number of features. Vectors are
constructed from the BNC using a window-based
method, with a window size of 5 (2 words either
side of the target word). We experiment with vec-
tor sizes up to 0.5M features, which is close to the
total number of context words present in the en-
tire BNC according to our preprocessing scheme.
Features are added according to frequency in the
BNC, with increasingly more rare features being
added. For weighting we consider both Positive
Mutual Information and T-Test, which have been
found to work best in previous research (Bullinaria
and Levy, 2012; Curran, 2004). Similarity is com-
puted using Cosine.

Similarity Measures

So far we used cosine similarity

Several other options for computing
similarity are available

In most cases Correlation is the best
choice (cosine similarity of vectors
normalized by their mean)

Kiela and Clark, A systematic study of
Semantic Vector Space Parameters, 2014,
is a good review

Measure Definition

Euclidean 1

1+
pPn

i=1(ui�vi)2

Cityblock 1
1+

Pn
i=1 |ui�vi|

Chebyshev 1
1+maxi |ui�vi|

Cosine u·v
|u||v|

Correlation (u�µu)·(v�µv)
|u||v|

Dice 2
Pn

i=0 min(ui,vi)Pn
i=0 ui+vi

Jaccard u·vPn
i=0 ui+vi

Jaccard2
Pn

i=0 min(ui,vi)Pn
i=0 max(ui,vi)

Lin
Pn

i=0 ui+vi
|u|+|v|

Tanimoto u·v
|u|+|v|�u·v

Jensen-Shannon Div 1�
1
2 (D(u||u+v

2)+D(v||u+v
2))

p
2 log 2

↵-skew 1� D(u||↵v+(1�↵)u)p
2 log 2

Table 2: Similarity measures between vectors v
and u, where vi is the ith component of v

whether removing more context words, based on
a frequency cut-off, can improve performance.

3 Experiments

The parameter space is too large to analyse ex-
haustively, and so we adopted a strategy for how
to navigate through it, selecting certain parame-
ters to investigate first, which then get fixed or
“clamped” in the remaining experiments. Unless
specified otherwise, vectors are generated with the
following restrictions and transformations on fea-
tures: stopwords are removed, numbers mapped
to ‘NUM’, and only strings consisting of alphanu-
meric characters are allowed. In all experiments,
the features consist of the frequency-ranked first n
words in the given source corpus.

Four of the five similarity datasets (RG, MC,
W353, MEN) contain continuous scales of sim-
ilarity ratings for word pairs; hence we follow
standard practice in using a Spearman correlation
coefficient ⇢s for evaluation. The fifth dataset
(TOEFL) is a set of multiple-choice questions,
for which an accuracy measure is appropriate.
Calculating an aggregate score over all datasets
is non-trivial, since taking the mean of correla-
tion scores leads to an under-estimation of per-
formance; hence for the aggregate score we use
the Fisher-transformed z-variable of the correla-

Scheme Definition

None wij = fij

TF-IDF wij = log(fij)⇥ log(N
nj

)

TF-ICF wij = log(fij)⇥ log(N
fj
)

Okapi BM25 wij =
fij

0.5+1.5⇥
fj
fj
j

+fij
log

N�nj+0.5

fij+0.5

ATC wij =
(0.5+0.5⇥

fij
maxf

) log(N
nj

)
rPN

i=1[(0.5+0.5⇥
fij

maxf
) log(N

nj
)]2

LTU wij =
(log(fij)+1.0) log(N

nj
)

0.8+0.2⇥fj⇥ j
fj

MI wij = log
P (tij |cj)

P (tij)P (cj)

PosMI max(0,MI)

T-Test wij =
P (tij |cj)�P (tij)P (cj)p

P (tij)P (cj)

�2 see (Curran, 2004, p. 83)

Lin98a wij =
fij⇥f

fi⇥fj

Lin98b wij = �1⇥ log
nj

N

Gref94 wij =
log fij+1

lognj+1

Table 3: Term weighting schemes. fij denotes the
target word frequency in a particular context, fi
the total target word frequency, fj the total context
frequency, N the total of all frequencies, nj the
number of non-zero contexts. P (tij |cj) is defined
as fij

fj
and P (tij) as fij

N .

tion datasets, and take the weighted average of
its inverse over the correlation datasets and the
TOEFL accuracy score (Silver and Dunlap, 1987).

3.1 Vector size

The first parameter we investigate is vector size,
measured by the number of features. Vectors are
constructed from the BNC using a window-based
method, with a window size of 5 (2 words either
side of the target word). We experiment with vec-
tor sizes up to 0.5M features, which is close to the
total number of context words present in the en-
tire BNC according to our preprocessing scheme.
Features are added according to frequency in the
BNC, with increasingly more rare features being
added. For weighting we consider both Positive
Mutual Information and T-Test, which have been
found to work best in previous research (Bullinaria
and Levy, 2012; Curran, 2004). Similarity is com-
puted using Cosine.

Evaluation
Intrinsic

• evaluate word pairs
similarities → compare with
similarity judgments given by
humans (WordSim, MEN,
Mechanical Turk, SImLex)

• evaluate on analogy tasks
"Paris is to France as Tokyo is to
x" (MSR analogy, Google
analogy)

Extrinsic
• use the vectors in a

downstream task
(classification, translation, ...)
and evaluate the final
performance on the task

Best parameters configuration?
(context, similarity measure, weighting, ...)

Depends on the task!

Methods overview

Methods
Semantic Differential (Osgood at al. 1957)

Semantic features (Smith at al. 1974)

Mechanisms of sentence processing assigning
roles to constituents (McLelland and Kawamoto
1986)

Learning Distributed Representations of Concepts
(Hinton et al. 1986)

Forming Global Representations with Extended
Back-Propagation [FGREP] (Mikkulainen and Dyer
1987)

Sparse Distributed Memory [SDM] (Kanerva 1988)

Latent Semantic Analysis [LSA] (Deerwester et al.
1988-1990)

Hyperspace Analogue to Language [HAL] (Lund
and Burgess 1995)

Probabilistic Latent Semantic Analysis [pLSA]
(Hoffman et al. 1999)

Random Indexing (Kanerva et al. 2000)

Latent Dirichlet Allocation [LDA] (Blei et al. 2003)

A neural probabilistic language model (Bengio et al.
2003)

Infomap (Widdows et al. 2004)

Correlated Occurrence Analogue to Lexical
Semantic [COALS] (Rohde et al. 2006)

Dependency Vecotrs (Padó and Lapata 2007)

Explicit Semantic Analysis (Gabrilovich and
Markovich 2007)

Distributional Memory (Baroni and Lenci 2009)

Non-Negative Matrix Factorization [NNMF] (Van
de Cruys et al. 2010) originally: (Paatero and Tapper
1994)

JoBimText (Biemann and Riedl 2013)

word2vec [SGNS and CBOW] (Mikolov et al. 2013)

vLBL and ivLBL (Mnih and Kavukcuoglu 2013)

Hellinger PCA (HPCA) (Lebret and Collobert 2014)

Global Vectors [GloVe] (Pennington et al. 2014)

Infinite Dimensional Word Embeddings (Nalisnick
and Ravi 2015)

Gaussian Embeddings (Vilnis and McCallum 2015)

Diachronic Word Embeddings (Hamilton et al.
2016)

WordRank (Ji et al. 2016)

Exponential Family Embeddings (Rudolph et al.
2016)

Multimodal Word Distributions (Athiwaratkun
and Wilson 2017)

Explicit vs Implicit

Explicit vectors: big sparse vectors with
interpretable dimensions

Implicit vectors: small dense vectors
with latent dimensions

Count vs Prediction

Alessandro Lenci, Distributional models of
word meaning, 2017

Distributional Semantic Models

Count models

Matrix models Random encoding models

Prediction models

distributional representations

explicit vectors implicit vectors

Distributional Semantic Models

Word models
(lexemes)

Window-based models
(window-based collocates)

Syntactic models
(syntactic collocates)

Region models
(text regions)

Figure 2

A classification of DSMs based on (left) context types and (right) methods to build distributional vectors

Table 2 Most common matrix DSMs.

Model name Description

Latent Semantic Analysis (LSA)a word-by-region matrix, weighted with entropy and reduced with SVD

Hyperspace Analogue of Language (HAL)b window-based model with directed collocates

Dependency Vectors (DV)c syntactic model with dependency-filtered collocates

Latent Relational Analysis (LRA)d pair-by-pattern matrix reduced with SVD to measure relational similarity

Distributional Memory (DM)e target–link–context tuples formalized with a high-order tensor

Topic Modelsf word-by-region matrix reduced with Bayesian inference

High Dimensional Explorer (HiDEx)g generalization of HAL with a larger range of parameter settings

Global Vectors (GloVe)h word-by-word matrix reduced with weighted least squares regression

aLandauer & Dumais (1997); bBurgess (1998); cPadó & Lapata (2007); dTurney (2006); eBaroni & Lenci

(2010); fGri�ths et al. (2007); gShaoul & Westbury (2010); hPennington et al. (2014).

shown that narrow context windows and syntactic collocates are best to capture lexemes

related by paradigmatic semantic relations (e.g., synonyms and antonyms) or belonging to

the same taxonomic category (e.g., violin and guitar), because they share very close collo-

cates (Sahlgren 2006; Bullinaria & Levy 2007; Van de Cruys 2008; Baroni & Lenci 2011;

Bullinaria & Levy 2012; Kiela & Clark 2014; Levy & Goldberg 2014a). Conversely, collo-

cates extracted with larger context windows are biased towards more associative semantic

relations (e.g., violin and music), like region models.

The second dimension of variation among DSMs is the method to learn distributional

representations. Matrix models (see Table 2) are a rich family of DSMs that generalize the

vector space model in information retrieval (see Section 2). They are a subtype of so-called

count models (Baroni et al. 2014b), which learn the representation of a target lexeme by

recording and counting its co-occurrences in linguistic contexts. Matrix models arrange

distributional data into co-occurrence matrices. The matrix is a formal representation of

the global distributional statistics extracted from the corpus. The weighting functions use

such global statistics to estimate the importance of co-occurrences to characterize target

www.annualreviews.org • Distributional semantics 9

Hyperspace Analogue
to Language [HAL]

Target: a specific word

Context: window of ten words

Weighting: (10 - distance from target) for
each occurrence

Similarity: euclidean distance

Dimensionality reduction: sort contexts
(columns of the matrix) by variance and
keep top 200

the dog barked at the cat

weight dog barked= 10 (no gap)

weight dog cat = 7 (3 words gap)

c2 c7 ... c3 c5 c6

w1 54 23 ... 8 4 1

w1 21 82 ... 10 6 0

...

wn 32 47 ... 9 3 1

variance 30 25 ... 5 3 0,5

201+ discardtop 200 keep

Hyperspace Analogue to Language

Advantages

• Simple

• Fast O(n)

Disadvantages

• No higher order interactions (only
direct co-occurrence)

Latent Semantic
Analysis [LSA]

Target: a specific word

Context: document id

Weighting: tf-idf (term frequency - inverse
document frequency), but can use others

Similarity: cosine

Dimensionality reduction: Singular Value
Decomposition (SVD)

weightij = log(fij) · log(
N

nj
)

frequency of word j in
document i

total documents over
documents containing word j

Intuition: the more frequency in the document, the better. The
less frequent in the corpus, the better

TF IDF

SVD in a nutshell

documents

te
rm

s

W
m x n

U
m x m

𝝨
m x n

V
n x n

=

rank k < r

kk k

Intuition
keep top k singular values as they contain most of the variance
k can be interpreted as the number of topics

W = Uk⌃kV
>
k

Target matrix
TSV D = Uk⌃k

TSV D = Uk

Context matrix

Trick from (Levy at al.
2015): throw 𝝨 away for
better performance

C
n x k

topics

do
cu

m
en

ts

T
m x k

topics

te
rm

s

CSV D = V >
k

Latent Semantic Analysis

Advantages

• Reduced dimension k can be
interpreted as topics

• Reducing the number of columns
unveils higher order interactions

Disadvantages

• Static → can't easily add new
documents, words and topics

• SVD is one time operation, without
intermediate results

• Expensive in terms of memory and
computation O(k2m)

Random Indexing [RI]

Locality-sensitive hashing method that
approximates the distance between
points

Generates random matrix R and projects
the original matrix A to it to obtain a
reduced matrix B

Reduced space B preserves the euclidean
distance between points in original space
A (Johnson-Lindenstrauss lemma)

Bn,k ⇡ An,mRm,k k ⌧ m

(1� ✏)dr(v, u) d(v, u) (1 + ✏)dr(v, u)

A

B
d

dr

u
u

v v

Random Indexing [RI]

Algorithm

• For every word in the corpus create a
sparse random context vector with
values in {-1, 0, 1}

• Target vectors are the sum of the
context vectors of the words they co-
occur with multiplied by the frequency
of the co-occurrence

1 0I 0 0 0 -1 0

drink 0 0 1 0 0 0 0

I drink beer
You drink a glass of beer

Dataset

Context Vectors

beer 0 1 0 0 0 0 0

you 0 -1 0 0 0 0 1

glass -1 0 0 0 1 0 0

tvbeer = 1cvi + 2cvdrink + 1cvyou + 1cvglass

Term Vectors

beer 0 -1 2 0 1 -1 1

Context Vectors

Target Vectors

Dataset

I drink beer
You drink a glass of beer

Random Indexing

Advantages

• Fast O(n)

• Incremental → can add new words
any time, just create a new
context vector

Disadvantages

• In many intrinsic tasks doesn't
perform as well as other methods

• Stochasticity in the process →
random distortion

• Negative similarity scores

Latent Dirichlet
Allocation [LDA]
Target: a specific word

Context: document id

Assumptions:

• Latent topics (same idea as k in LSA)

• Each topic is a Dirichlet distribution over
words

• Each document is a mixture of corpus-
wide topics

• Each word is drawn from one of the
topics

α θ

z

wψβ

K

D

Nd

topic distribution
over words

word

topic

document
distribution
over topics

document

Target matrix Context matrix

C
n x k

do
cu

m
en

ts

T
m x k

topics

w
or

ds

topics

The values of
T and C are
probabilities

Latent Dirichlet Allocation
DocumentsTopics Topics proportions and

assignments

Latent Dirichlet Allocation

Advantages

• Dirichlet prior → each document
is about few topic

• Easy to interpret

Disadvantages

• Expensive to compute O(nk2)

• Static → can't easily add new
documents, words and topics
(although some extensions do it)

Explicit Semantic
Analysis [ESA]
Target: a specific word

Context: Wikipedia article

Assumption: Wikipedia articles are
explicit topics

Weighting: tf-idf

Similarity: cosine

Dimensionality Reduction: discard too
short articles and articles with few other
articles linking them

Mouse
[Rodent]

Mouse
[computing]

Mickey
Mouse Button Janson

Button
Drag and

Drop

mouse 0,95 0,89 0,81 0,50 0,01 0,60

button 0,10 0,81 0,20 0,95 0,89 0,70

mouse
button 0,50 0,85 0,50 0,72 0,45 0,65

average of 2 vectors → emerges disambiguated meaning

cat leopard jaguar car animal button

Panther 0,83 0,72 0,65 0,3 0,92 0,01

Explicit Semantic Analysis

Advantages

• Simple

• Fast O(n)

• Interpretable

Disadvantages

• The assumption doesn't
always hold

• Doesn't perform as good as
other methods

• Vectors are really high
dimensional, although quite
sparse

JoBimText

Generic holing @ operation

Apply it to any tuple to obtain
targets (jo) and contexts (bim)

Weighting: custom measure similar
to Lin

Similarity: Lexicographer Mutual
Information (PMI x Frequency)
(Kilgarriff et al. 2004)

target context
I (nsubj, gave, @)

gave (nsubj, @, I)

a (det, book, @)

book (det, @, a)

... ...

girl (prep_to, gave, @)

gave (prep_to, @, girl)

Input tuple
(nsubj, gave, I)

(det, book, a)

(dobj, gave, book)

(det girl, the)

(prep_to, gave, girl)

target context
I (@, gave, a, book)

gave (I, @, a, book)

a (I, gave, @, book)

book (I, gave, a, @)

... ...

the (book, to, @, girl)

girl (book, to, the, @)

Input tuple
(I, gave, a, book)

(gave, a, book, to)

(a, book, to, the)

(book, to, the, girl)

JoBimText

Advantages

• Generic preprocessing operation
deals with many context
representations and types of data

• Deals with complex contexts
(example: several steps in a tree)

Disadvantages

• No dimensionality reduction →
vectors are high dimensional

• No uncovering of higher order
relations

• MapReduce implementation only
effective on clusters

word2vec

Skip Gram with Negative Sampling
(SGNS)

Target: a specific word

Context: window of n words

Vectors are obtained training the model
to predict the context given a target

The error of the prediction is back-
propagated and the vectors updated Probability that if you

randomly pick a word nearby
"ant" you will get "car"

eTiCj

P
eTiCj

X T X C

Target vectors Context vectorsinput

→

output

→→

hidden softmax

300 dimensions

30
0

di
m

en
sio

ns

X →
Target vector for "ants"

Context vector for "car"

eTiCj

P
eTiCj

softmax

Example

X

The quick brown fox jumps over the lazy dog

T X
C

Target vectors Context vectors

the

one
hot

softmax→
brown

fox

quick
jumps

over

dog
lazy

the

brown
fox

quick
jumps

over

dog
lazy

prediction

the

brown
fox

quick
jumps

over

dog
lazy

ground
truth

They should be the same

→→

hidden

Example

X

The quick brown fox jumps over the lazy dog

T X
C

Target vectors Context vectors

the

one
hot

softmax→
brown

fox

quick
jumps

over

dog
lazy

the

brown
fox

quick
jumps

over

dog
lazy

prediction

the

brown
fox

quick
jumps

over

dog
lazy

ground
truth

They are different
Back-propagate the error and update
the vectors to improve prediction

→ →

Model and Loss

H(y, ŷ) = �
X

k

yk log ŷk

Categorical
cross entropy

True one
hot label

Predicted one
hot label

targetcontext

p(wj |wi) = softmax(Ti · Cj) =
eTi·Cj

P
k e

Ti·Ck

Example Negative Sampling

The quick brown fox jumps over the lazy dog

Calculating the full softmax is expensive
because of large vocabulary

1. Create pairs of target and context
words and predict the probability of
them co-occurring to be 1

2. Sample false context words from their
unigram distribution and predict the
probability of them co-occurring with true
target word to be 0

(fox, quick) → 1
(fox, brown) → 1
(fox, jumps) → 1
(fox, over) → 1

(fox, quick) → 1
(fox, brown) → 1
(fox, jumps) → 1
(fox, over) → 1

(fox, the) → 0
(fox, lazy) → 0
(fox, dog) → 0
(fox, the) → 0

Negative Sampling Loss

Number of
negative
samples

target context Sample from
the distribution
of words

Vector of the
negative
sample

log �(Ti · Cj) +
nX

E
k⇠P (w)

log �(�Tk · Cj)

SGNS as matrix factorization

= ?

W
or

ds

Contexts

Features

Fe
at

ur
es

X

Target vectors Context vectors

SGNS as matrix factorization

W
or

ds

Contexts

�log(k)= PMIX

W
or

ds

Contexts

Features

Fe
at

ur
es

Target vectors Context vectors

word2vec

Advantages

• Iterative way for factorizing a matrix

• Fast O(nm), great implementations

• Several parameters to improve
performance (negative samples,
subsampling of frequent words, ...)

• Default parameters can go a long way

Disadvantages

• Inflexible definition of context

• Doesn't use dataset statistics in a
smart way

• Columns are hard to interpret as
topics

Are neural word embeddings better than classic DSMs?

Yes
With vanilla
parameters

Baroni et al., Don’t count,
predict! A systematic
comparison of context-
counting vs. context-
predicting semantic vectors,
2014

No
With optimal
parameters

Levy et al., Improving
Distributional Similarity with
Lessons Learned from Word
Embeddings, 2015

Maybe
Trained on 1 billion+
words

Sahlgren and Lenci, The
Effects of Data Size and
Frequency Range on
Distributional Semantic
Models , 2016

GloVe

Explicit factorization of target x contexts
matrix

Precomputes the matrix (unlike SGNS)

Uses directly the statistics of the dataset
(frequencies of co-occurrences)

J =
X

i,j

f(Wij)(w
>
i w̃j � logWij)

2

frequency of word
i in context j

target context like SGNS

W
or

ds

Contexts

= WX

Words Contexts

W
or

ds

Contexts

Features

Fe
at

ur
es

GloVe

Advantages

• Better use of dataset statistics

• Converges to good solutions with
less data

• Simple to apply on different
contexts

Disadvantages

• Recent comparisons show that on
many tasks it doesn't perform as
well as LSA or SGNS

Gaussian Embeddings and
Multimodal Word Distributions

density

fw(~x) =
KX

i=1

pw,i N [~x; ~µw,i,⌃w,i] (1)

=
KX

i=1

pw,ip
2⇡|⌃w,i|

e�
1
2 (~x�~µw,i)>⌃�1

w,i
(~x�~µw,i) ,

where
PK

i=1 pw,i = 1.

The mean vectors ~µw,i represent the location of
the ith component of word w, and are akin to the
point embeddings provided by popular approaches
like word2vec. pw,i represents the component
probability (mixture weight), and ⌃w,i is the com-
ponent covariance matrix, containing uncertainty
information. Our goal is to learn all of the model
parameters ~µw,i, pw,i,⌃w,i from a corpus of nat-
ural sentences to extract semantic information of
words. Each Gaussian component’s mean vector
of word w can represent one of the word’s distinct
meanings. For instance, one component of a pol-
ysemous word such as ‘rock’ should represent the
meaning related to ‘stone’ or ‘pebbles’, whereas
another component should represent the meaning
related to music such as ‘jazz’ or ‘pop’. Figure
1 illustrates our word embedding model, and the
difference between multimodal and unimodal rep-
resentations, for words with multiple meanings.

3.2 Skip-Gram

The training objective for learning ✓ =
{~µw,i, pw,i,⌃w,i} draws inspiration from the
continuous skip-gram model (Mikolov et al.,
2013a), where word embeddings are trained to
maximize the probability of observing a word
given another nearby word. This procedure
follows the distributional hypothesis that words
occurring in natural contexts tend to be semanti-
cally related. For instance, the words ‘jazz’ and
‘music’ tend to occur near one another more often
than ‘jazz’ and ‘cat’; hence, ‘jazz’ and ‘music’
are more likely to be related. The learned word
representation contains useful semantic informa-
tion and can be used to perform a variety of NLP
tasks such as word similarity analysis, sentiment
classification, modelling word analogies, or as a
preprocessed input for complex system such as
statistical machine translation.

music

jazz

rock

basalt

pop

stone

rock

stone

Figure 1: Top: A Gaussian Mixture embed-
ding, where each component corresponds to a dis-
tinct meaning. Each Gaussian component is rep-
resented by an ellipsoid, whose center is specified
by the mean vector and contour surface specified
by the covariance matrix, reflecting subtleties in
meaning and uncertainty. On the left, we show ex-
amples of Gaussian mixture distributions of words
where Gaussian components are randomly initial-
ized. After training, we see on the right that
one component of the word ‘rock’ is closer to
‘stone’ and ‘basalt’, whereas the other component
is closer to ‘jazz’ and ‘pop’. We also demonstrate
the entailment concept where the distribution of
the more general word ‘music’ encapsulates words
such as ‘jazz’, ‘rock’, ‘pop’. Bottom: A Gaussian
embedding model (Vilnis and McCallum, 2014).
For words with multiple meanings, such as ‘rock’,
the variance of the learned representation becomes
unnecessarily large in order to assign some proba-
bility to both meanings. Moreover, the mean vec-
tor for such words can be pulled between two clus-
ters, centering the mass of the distribution on a re-
gion which is far from certain meanings.

3.3 Energy-based Max-Margin Objective

Each sample in the objective consists of two pairs
of words, (w, c) and (w, c0). w is sampled from a
sentence in a corpus and c is a nearby word within
a context window of length `. For instance, a word
w = ‘jazz’ which occurs in the sentence ‘I listen
to jazz music’ has context words (‘I’, ‘listen’, ‘to’
, ‘music’). c0 is a negative context word (e.g. ‘air-
plane’) obtained from random sampling.

The objective is to maximize the energy be-
tween words that occur near each other, w and c,
and minimize the energy between w and its nega-
tive context c0. This approach is similar to neg-

Instead of representing
words as points, represent
them as distributions

Mean and variance in every
dimension

Multimodal mixes a fixed
number of gaussian
distributions

density

fw(~x) =
KX

i=1

pw,i N [~x; ~µw,i,⌃w,i] (1)

=
KX

i=1

pw,ip
2⇡|⌃w,i|

e�
1
2 (~x�~µw,i)>⌃�1

w,i
(~x�~µw,i) ,

where
PK

i=1 pw,i = 1.

The mean vectors ~µw,i represent the location of
the ith component of word w, and are akin to the
point embeddings provided by popular approaches
like word2vec. pw,i represents the component
probability (mixture weight), and ⌃w,i is the com-
ponent covariance matrix, containing uncertainty
information. Our goal is to learn all of the model
parameters ~µw,i, pw,i,⌃w,i from a corpus of nat-
ural sentences to extract semantic information of
words. Each Gaussian component’s mean vector
of word w can represent one of the word’s distinct
meanings. For instance, one component of a pol-
ysemous word such as ‘rock’ should represent the
meaning related to ‘stone’ or ‘pebbles’, whereas
another component should represent the meaning
related to music such as ‘jazz’ or ‘pop’. Figure
1 illustrates our word embedding model, and the
difference between multimodal and unimodal rep-
resentations, for words with multiple meanings.

3.2 Skip-Gram

The training objective for learning ✓ =
{~µw,i, pw,i,⌃w,i} draws inspiration from the
continuous skip-gram model (Mikolov et al.,
2013a), where word embeddings are trained to
maximize the probability of observing a word
given another nearby word. This procedure
follows the distributional hypothesis that words
occurring in natural contexts tend to be semanti-
cally related. For instance, the words ‘jazz’ and
‘music’ tend to occur near one another more often
than ‘jazz’ and ‘cat’; hence, ‘jazz’ and ‘music’
are more likely to be related. The learned word
representation contains useful semantic informa-
tion and can be used to perform a variety of NLP
tasks such as word similarity analysis, sentiment
classification, modelling word analogies, or as a
preprocessed input for complex system such as
statistical machine translation.

music

rock

basalt

stone

music

jazz

pop

Figure 1: Top: A Gaussian Mixture embed-
ding, where each component corresponds to a dis-
tinct meaning. Each Gaussian component is rep-
resented by an ellipsoid, whose center is specified
by the mean vector and contour surface specified
by the covariance matrix, reflecting subtleties in
meaning and uncertainty. On the left, we show ex-
amples of Gaussian mixture distributions of words
where Gaussian components are randomly initial-
ized. After training, we see on the right that
one component of the word ‘rock’ is closer to
‘stone’ and ‘basalt’, whereas the other component
is closer to ‘jazz’ and ‘pop’. We also demonstrate
the entailment concept where the distribution of
the more general word ‘music’ encapsulates words
such as ‘jazz’, ‘rock’, ‘pop’. Bottom: A Gaussian
embedding model (Vilnis and McCallum, 2014).
For words with multiple meanings, such as ‘rock’,
the variance of the learned representation becomes
unnecessarily large in order to assign some proba-
bility to both meanings. Moreover, the mean vec-
tor for such words can be pulled between two clus-
ters, centering the mass of the distribution on a re-
gion which is far from certain meanings.

3.3 Energy-based Max-Margin Objective

Each sample in the objective consists of two pairs
of words, (w, c) and (w, c0). w is sampled from a
sentence in a corpus and c is a nearby word within
a context window of length `. For instance, a word
w = ‘jazz’ which occurs in the sentence ‘I listen
to jazz music’ has context words (‘I’, ‘listen’, ‘to’
, ‘music’). c0 is a negative context word (e.g. ‘air-
plane’) obtained from random sampling.

The objective is to maximize the energy be-
tween words that occur near each other, w and c,
and minimize the energy between w and its nega-
tive context c0. This approach is similar to neg-

Gaussian Embeddings Multimodal Distributions

Gaussian Embeddings and
Multimodal Word Distributions

Advantages

• Words as distributions instead of
point in a space is a promising
direction

• Better treatment of polysemy

Disadvantages

• More expensive than previous
models

• Still brittle → fixed number of
mixtures

Takeaways from literature*
No single algorithm consistently
outperforms the others: all models
in the same ballpark

SGNS is only slightly better when
there is more than 1 billion words in
the corpus

iSVD is slightly better in most other
cases

SVD better on similarity, SGNS
better on analogy

Hyperparameter settings are more
important than algorithm choice

Training on a larger corpus helps

*Levy, Goldberg and Dagan, Improving Distributional Similarity with Lesson Learn from Word Embeddings, 2015

Recommendations from literature*
DON’T use shifted PPMI with SVD

DON’T use SVD “correctly”, i.e. without
eigenvector weighting, throwing away
Sigma

DO use PPMI and SVD with short
contexts (window size of 2)

DO use many negative samples with
SGNS

DO always use context distribution
smoothing (raise unigram distribution
to the power of α=0.75)

DO use SGNS as a baseline (robust, fast
and cheap to train)

DO try adding context vectors in SGNS
and GloVe

*Levy, Goldberg and Dagan, Improving Distributional Similarity with Lesson Learn from Word Embeddings, 2015

Open questions and current trends

Compositionality

So far we represented words as
vectors, how to represent
sentences?

Can't use the co-occurrences of
sentences in their context as
sentences are sparse, most of
them occur once

Should represent their meaning
combining word representations

The meaning of an utterance is a
function of the meaning of its parts
and their composition rules - Gottlob
Frege, Über Sinn und Bedeutung,
1892

Composition operators

Simple solution, just sum the vectors of
the words in a sentence!

Other operators: product, weighted sum,
convolution, ... (Mitchell and Lapata,
2008)

It's hard to perform better than the
simple sum

Sum can't be the real answer as it's
commutative → doesn't consider word
order

drive

car

I drive a car

Learn to compose
Recursive Matrix Vector
Network (Socher at al. 2012)

Recursive Neural Tensor
Network (Socher et al. 2013)

Recurrent Neural Network
(Elman 1990) and others

C

X

oi-1 wi

sentence[w1, …, wi]
oi on

C

X

…

…

…

w1 w2 wn

sentence

[w1, w2]

C

X

…

…

…

w1 w2 wn

sentence

[w1, w2]

X

+

vector matrix tensor

CX+

sum product concatLe
ge

nd

Subword structure
Assumption: similar words are similarly spelled (player
/ played)

Exploit characters and character sequences

Useful to deal with misspells and rare / new words
(player ~ pleyer)

Beware of pitfalls (pray / prey)

• CharCNN (Zhang, Zhao and LeCun 2015)

• LSTM with word CharCNN (Kim 2016)

• FastText (Bojanowski 2016)

• Luong and Manning, Achieving Open Vocabulary Neural
Machine Translation with Hybrid Word-Character
Models, 2016

pla

player

player
pleyer

lay
aye
yer

Embeddings for Graphs

Embeddings for Graphs

Target
Context

Knowledge Graph
2

Leonard Nimoy

Spock

Star Trek

Science Fiction

Star Wars Alec Guinness

Obi-Wan Kenobi

starredIn

played characterIn genre

starredIn

playedcharacterIngenre

Fig. 1. Sample knowledge graph. Nodes represent entities, edge labels represent
types of relations, edges represent existing relationships.

frames [13]. More recently, it has been used in the Semantic
Web community with the purpose of creating a “web of data”
that is readable by machines [14]. While this vision of the
Semantic Web remains to be fully realized, parts of it have
been achieved. In particular, the concept of linked data [15, 16]
has gained traction, as it facilitates publishing and interlinking
data on the Web in relational form using the W3C Resource
Description Framework (RDF) [17, 18]. (For an introduction
to knowledge representation, see e.g. [11, 19, 20]).

In this article, we will loosely follow the RDF standard and
represent facts in the form of binary relationships, in particular
(subject, predicate, object) (SPO) triples, where subject and
object are entities and predicate is the relation between
them. (We discuss how to represent higher-arity relations
in Section X-A.) The existence of a particular SPO triple
indicates an existing fact, i.e., that the respective entities are in
a relationship of the given type. For instance, the information

Leonard Nimoy was an actor who played the char-
acter Spock in the science-fiction movie Star Trek

can be expressed via the following set of SPO triples:

subject predicate object

(LeonardNimoy, profession, Actor)
(LeonardNimoy, starredIn, StarTrek)
(LeonardNimoy, played, Spock)
(Spock, characterIn, StarTrek)
(StarTrek, genre, ScienceFiction)

We can combine all the SPO triples together to form a multi-
graph, where nodes represent entities (all subjects and objects),
and directed edges represent relationships. The direction of an
edge indicates whether entities occur as subjects or objects, i.e.,
an edge points from the subject to the object. Different relations
are represented via different types of edges (also called edge
labels). This construction is called a knowledge graph (KG),
or sometimes a heterogeneous information network [21].) See
Figure 1 for an example.

In addition to being a collection of facts, knowledge graphs
often provide type hierarchies (Leonard Nimoy is an actor,
which is a person, which is a living thing) and type constraints
(e.g., a person can only marry another person, not a thing).

B. Open vs. closed world assumption
While existing triples always encode known true relationships

(facts), there are different paradigms for the interpretation of

TABLE I
KNOWLEDGE BASE CONSTRUCTION PROJECTS

Method Schema Examples

Curated Yes Cyc/OpenCyc [23], WordNet [24],
UMLS [25]

Collaborative Yes Wikidata [26], Freebase [7]

Auto. Semi-Structured Yes YAGO [4, 27], DBPedia [5],
Freebase [7]

Auto. Unstructured Yes Knowledge Vault [28], NELL [6],
PATTY [29], PROSPERA [30],
DeepDive/Elementary [31]

Auto. Unstructured No ReVerb [32], OLLIE [33],
PRISMATIC [34]

non-existing triples:
‚ Under the closed world assumption (CWA), non-existing

triples indicate false relationships. For example, the fact
that in Figure 1 there is no starredIn edge from Leonard
Nimoy to Star Wars is interpreted to mean that Nimoy
definitely did not star in this movie.

‚ Under the open world assumption (OWA), a non-existing
triple is interpreted as unknown, i.e., the corresponding
relationship can be either true or false. Continuing with the
above example, the missing edge is not interpreted to mean
that Nimoy did not star in Star Wars. This more cautious
approach is justified, since KGs are known to be very
incomplete. For example, sometimes just the main actors
in a movie are listed, not the complete cast. As another
example, note that even the place of birth attribute, which
you might think would be typically known, is missing for
71% of all people included in Freebase [22].

RDF and the Semantic Web make the open-world assumption.
In Section VII-B we also discuss the local closed world
assumption (LCWA), which is often used for training relational
models.

C. Knowledge base construction
Completeness, accuracy, and data quality are important

parameters that determine the usefulness of knowledge bases
and are influenced by the way knowledge bases are constructed.
We can classify KB construction methods into four main
groups:

‚ In curated approaches, triples are created manually by a
closed group of experts.

‚ In collaborative approaches, triples are created manually
by an open group of volunteers.

‚ In automated semi-structured approaches, triples are
extracted automatically from semi-structured text (e.g.,
infoboxes in Wikipedia) via hand-crafted rules, learned
rules, or regular expressions.

‚ In automated unstructured approaches, triples are ex-
tracted automatically from unstructured text via machine
learning and natural language processing techniques (see,
e.g., [9] for a review).

Construction of curated knowledge bases typically leads to
highly accurate results, but this technique does not scale well

Node = Entity
Link = Relation

Knowledge Graphs
Tensor Factorizations
(Nickel et al. 2015)

Universal Schema
(Riedel at al. 2013)

7

«

i-th
entity

j-th entity

k-th
relation

i-th
entity j-th

entity

k-th
relation

Yk EWkEJ

Fig. 4. RESCAL as a tensor factorization of the adjacency tensor Y.

while it occurs in the triple xpiq as the object of a relationship
of type q. However, the predictions fijk “ eJ

i
Wkej and

fpiq “ eJ
p
Wqei both use the same latent representation ei

of the i-th entity. Since all parameters are learned jointly,
these shared representations permit to propagate information
between triples via the latent representations of entities and the
weights of relations. This allows the model to capture global
dependencies in the data.

Semantic embeddings: The shared entity representations
in RESCAL capture also the similarity of entities in the
relational domain, i.e., that entities are similar if they are
connected to similar entities via similar relations [65]. For
instance, if the representations of ei and ep are similar, the
predictions fijk and fpjk will have similar values. In return,
entities with many similar observed relationships will have
similar latent representations. This property can be exploited for
entity resolution and has also enabled large-scale hierarchical
clustering on relational data [63, 64]. Moreover, since relational
similarity is expressed via the similarity of vectors, the latent
representations ei can act as proxies to give non-relational
machine learning algorithms such as k-means or kernel methods
access to the relational similarity of entities.

Connection to tensor factorization: RESCAL is similar
to methods used in recommendation systems [66], and to
traditional tensor factorization methods [67]. In matrix notation,
Equation (3) can be written compactly as as Fk “ EWkEJ,
where Fk P RNeˆNe is the matrix holding all scores for the
k-th relation and the i-th row of E P RNeˆHe holds the latent
representation of ei. See Figure 4 for an illustration. In the
following, we will use this tensor representation to derive a
very efficient algorithm for parameter estimation.

Fitting the model: If we want to compute a probabilistic
model, the parameters of RESCAL can be estimated by
minimizing the log-loss using gradient-based methods such as
stochastic gradient descent [68]. RESCAL can also be com-
puted as a score-based model, which has the main advantage
that we can estimate the parameters ⇥ very efficiently: Due
to its tensor structure and due to the sparsity of the data, it
has been shown that the RESCAL model can be computed
via a sequence of efficient closed-form updates when using
the squared-loss [63, 64]. In this setting, it has been shown
analytically that a single update of E and Wk scales linearly
with the number of entities Ne, linearly with the number of
relations Nr, and linearly with the number of observed triples,
i.e., the number of non-zero entries in Y [64]. We call this

algorithm RESCAL-ALS.9 In practice, a small number (say 30
to 50) of iterated updates are often sufficient for RESCAL-ALS
to arrive at stable estimates of the parameters. Given a current
estimate of E, the updates for each Wk can be computed in
parallel to improve the scalability on knowledge graphs with
a large number of relations. Furthermore, by exploiting the
special tensor structure of RESCAL, we can derive improved
updates for RESCAL-ALS that compute the estimates for the
parameters with a runtime complexity of OpH3

e
q for a single

update (as opposed to a runtime complexity of OpH5
e

q for
naive updates) [65, 69]. In summary, for relational domains
that can be explained via a moderate number of latent features,
RESCAL-ALS is highly scalable and very fast to compute.
For more detail on RESCAL-ALS see also Equation (26) in
Section VII.

Decoupled Prediction: In Equation (3), the probability
of single relationship is computed via simple matrix-vector
products in OpH2

e
q time. Hence, once the parameters have been

estimated, the computational complexity to predict the score of
a triple depends only on the number of latent features and is
independent of the size of the graph. However, during parameter
estimation, the model can capture global dependencies due to
the shared latent representations.

Relational learning results: RESCAL has been shown
to achieve state-of-the-art results on a number of relational
learning tasks. For instance, [63] showed that RESCAL
provides comparable or better relationship prediction results
on a number of small benchmark datasets compared to
Markov Logic Networks (with structure learning) [70], the
Infinite (Hidden) Relational model [71, 72], and Bayesian
Clustered Tensor Factorization [73]. Moreover, RESCAL has
been used for link prediction on entire knowledge graphs such
as YAGO and DBpedia [64, 74]. Aside from link prediction,
RESCAL has also successfully been applied to SRL tasks such
as entity resolution and link-based clustering. For instance,
RESCAL has shown state-of-the-art results in predicting which
authors, publications, or publication venues are likely to be
identical in publication databases [63, 65]. Furthermore, the
semantic embedding of entities computed by RESCAL has
been exploited to create taxonomies for uncategorized data via
hierarchical clusterings of entities in the embedding space [75].

B. Other tensor factorization models
Various other tensor factorization methods have been ex-

plored for learning from knowledge graphs and multi-relational
data. [76, 77] factorized adjacency tensors using the CP
tensor decomposition to analyze the link structure of Web
pages and Semantic Web data respectively. [78] applied
pairwise interaction tensor factorization [79] to predict triples
in knowledge graphs. [80] applied factorization machines to
large uni-relational datasets in recommendation settings. [81]
proposed a tensor factorization model for knowledge graphs
with a very large number of different relations.

It is also possible to use discrete latent factors. [82] proposed
Boolean tensor factorization to disambiguate facts extracted
with OpenIE methods and applied it to large datasets [83]. In

9ALS stands for Alternating Least-Squares

Tr
ai

n

0.95

Te
st

Surface Patterns KB Relations

X-professor-at-Y

1

1

0.05

X-historian-at-Y employee(X,Y) member(X,Y)

1 1

1

1 0.97

Rel. Extraction

1 0.93 0.97

Cluster Align

Reasoning with Universal Schema

Fe
rg

us
on

,H
ar

va
rd

O
m

an
,O

xf
or

d
Fi

rth
,O

xf
or

d
G

öd
el

,P
rin

ce
to

n

0.95

Figure 1: Filling up a database of universal schema.
Dark circles are observed facts, shaded circles are in-
ferred facts. Relation Extraction (RE) maps surface pat-
tern relations (and other features) to structured relations.
Surface form clustering models correlations between pat-
terns, and can be fed into RE (Yao et al., 2011). Database
alignment and integration models correlations between
structured relations (not done in this work). Reasoning
with the universal schema incorporates these tasks in a
joint fashion.

introduce a series of exponential family models that
estimate this probability using a natural parameter
✓r,t and the logistic function:

p (yr,t = 1|✓r,t) := � (✓r,t) =
1

1 + exp (�✓r,t)
.

We will first describe our models through differ-
ent definitions of the natural parameter ✓r,t. In each
case ✓r,t will be a function of r, t and a set of weights
and/or latent feature vectors. In section 2.5 we will
then show how these weights and vectors can be es-
timated based on the observed facts O.

Notice that we can interpret p (yr,t = 1) as the
probability that a customer t likes product r. This
analogy allows us to draw from a large body of work
in collaborative filtering, such as work in probabilis-
tic matrix factorization and implicit feedback.

2.1 Latent Feature Model

One way to define ✓r,t is through a latent feature
model F. Here we measure compatibility between
relation r and tuple t as dot product of two latent
feature representations of size KF: ar for relation r,
and vt for tuple t. This gives:

✓F
r,t :=

KFX

k

ar,kvt,k.

This corresponds to generalized PCA (Collins et al.,
2001), a model were the matrix ⇥ = (✓r,t) of natural
parameters is defined as the low rank factorization
AV.

Notice that we intentionally omit any per-relation
bias-terms. In section 4 we evaluate ranked answers
to queries on a per-relation basis, and a per-relation
bias term will have no effect on ranking facts of the
same relation. Also consider that such latent feature
models can capture asymmetry by assigning more
peaked vectors to specific relations, and more uni-
form vectors to general relations.

2.2 Neighborhood Model

We can interpolate the confidence for a given tuple
and relation based on the trueness of other similar
relations for the same tuple. In collaborative filter-
ing this is referred to as a neighborhood-based ap-
proach (Koren, 2008). In terms of our natural pa-
rameter, we implement a neighborhood model N via
a set of weights wr,r0 , where each corresponds to a
directed association strength between relations r and
r0. For a given tuple t and relation r we then sum
up the weights corresponding to all relations r0 that
have been observed for tuple t:

✓N
r,t :=

X

(r0,t)2O\{(r,t)}

wr,r0 .

Notice that the neighborhood model amounts to
a collection of local log-linear classifiers, one for
each relation r with feature functions fr,r0 (t) =
I [r0 6= r ^ (r0, t) 2 O] and weights wr. This means
that in contrast to model F, this model cannot har-
ness any synergies between textual and pre-existing
DB relations.

Node = Entity
Link = Relation

Exotic applications

item2vec - recommender systems (Barkan and Koenigstein 2016)

node2vec - graph embeddings (Grover and Leskovec 2016)

dna2vec (Ng 2017)

Predicting drug-drug interactions (Fokoue 2016)

Movies, music, playlists, recipes, ...

Conclusions
Know the theory (structuralism) and everything makes sense

Distributional Semantics and Embeddings have a long rich history

Context is king

No algorithm to rule them all, but a great toolset to chose from

Many aspects of reality can be seen in terms of targets and contexts

Go out and apply them to your business!

Thanks
Influenced this talk:

Magnus Sahlgren

Alfio Gliozzo

Marco Baroni

Alessandro Lenci

Yoav Goldberg

Andre Freitas

Pierpaolo Basile

Aurélie Herbelot

Arianna Betti

Contacts
piero.molino@gmail.com
http://w4nderlu.st

mailto:piero.molino@gmail.com
http://w4nderlu.st

