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Motivation
Word Embeddings: were a hot trend in 
NLP (Post-word2vec era, 2013-2018) 

Self-Supervised Learning: hot trend in 
NLP and ML (Post-ELMo era, 2018+) 

Many researchers and practitioner are 
oblivious of previous work in computer 
science, cognitive science and 
computational linguistics (Pre-word2vec 
era: up to 2013) 

Delays progress due to reinventing the 
wheel + many lessons to be learned



Goal

Overview* of the history and cultural 
background to start building on existing 
knowledge 

Propose a unifying interpretation of 
many algorithms

*Incomplete personal overview, a useful 
starting point for exploration



Outline

1. Linguistic background: Structuralism 

2. Distributional Semantics 

3. Embedding Methods overview 

4. Self-Supervised Learning



Terminology
Word Embeddings, Distributed 
Representations, Word Vectors, Distributional 
Semantic Models, Distributional 
Representations, Semantic Vector Space, Word 
Space, Semantic Space, Geometrical model of 
Meaning, Context-theoretic models, Corpus-
based semantics, Statistical semantics 

They all mean (almost) the same thing 

Distributional Semantic Models → 
Computational Linguistics literature 

Word Embeddings → Neural Networks 
literature



Structuralism



- Simon Blackburn, Oxford Dictionary of Philosophy, 2008

“The belief that phenomena of human life are not 
intelligible except through their interrelations. 

These relations constitute a structure,  
and behind local variations in the surface phenomena 

there are constant laws of abstract culture”

Structuralism



Origins of Structuralism

Ferdinand de Saussure, Cours de linguistique 
générale, 1916 

Published posthumous from notes of his students 

Previous ideas close to structuralism: 

• Wilhelm von Humboldt, Über den Dualis, 
1828 

• Wilhelm von Humboldt, Über die 
Verschiedenheit des menschlichen 
Sprachbaues, 1836 

• Ferdinand de Saussure, Mémoire sur le 
système des primitif voyelles dans les langues 
indo-européennes, 1879



Structuralism 
and Semiotics

Langue vs Parole 

Sign, Signifier, Signified 

Different languages use different 
signifiers for the same signified → the 
choice of signifiers is arbitrary 

Meaning of signs is defined by their 
relationships and contrasts with other 
signs

Sign
Grounded in a 

cultural system

Signifier
Expressive elements

word 
color 
images 
scent

Signified
Referent meaning

denoted object 
idea 
cultural symbol 
ideology



Meaning of signs is defined by 
their relationships and 
contrasts with other signs



Linguistic relationships

Paradigmatic: relationship between 
words that can be substituted for each 
other in the same position within a given 
sentence 

Syntagmatic: relationship a word has 
with other words that surround it 

Originally de Saussure used the term 
"associative", the term "paradigmatic" was 
introduced by Louis Hjelmslev, Principes 
de grammaire générale, 1928

the plays

boy jumps

talks

man

Syntagmatic 
in presentia

Paradigm
atic 

in absentia



Paradigmatic

HyponymySynonymy

Antonymy

Feline

Tiger Lion Hyponym

HypernymBubbling Effervescent Sparkling

Hot Cold



Syntagmatic

Collocation Colligation

against the law

become law

enforcementlaw

is passedlaw

VERB past time

saved

ADJECTIVE time

spent
wasted

half
extra

full

sp
or

t
no

rm
al



Distributionalism

American structuralist branch 

Leonard Bloomfield, Language, 1933 

Zellig Harris. Methods in Structural 
Linguistics, 1951 

Zellig Harris, Distributional Structure, 1954 

Zellig Harris, Mathematical Structure of 
Language, 1968



- Ludwig Wittgenstein, Philosophical Investigation, 1953

"The meaning of a word  
is its use in the language"

Philosophy of Language



- J.R. Firth, Papers in Linguistics,1957

"You shall know a word  
by the company it keeps"

Corpus Linguistics



Other relevant work

Willard Van Orman Quine, 
Word and Object, 1960 

Margaret Masterman, 
The Nature of a Paradigm, 
1965



Distributional Semantics



Distributional Hypothesis

The degree of semantic similarity between two 
linguistic expressions A and B is a function of the 
similarity of the linguistic contexts in which A and B 
can appear  

First formulation by Harris, Charles, Miller, Firth or Wittgenstein?



– McDonald and Ramscar, 2001  

We found a little, hairy wampimuk  
sleeping behind the tree 

He filled the wampimuk, passed 
it around and we all drunk some 



– McDonald and Ramscar, 2001  

We found a little, hairy wampimuk  
sleeping behind the tree 

He filled the wampimuk, passed 
it around and we all drunk some 



Distributional Semantic Model

1. Represent words through 
vectors recording their co-
occurrence counts with context 
elements in a corpus  

2. (Optionally) Apply a re-weighting 
scheme to the resulting co-
occurrence matrix  

3. (Optionally) Apply 
dimensionality reduction 
techniques to the co-occurrence 
matrix  

4. Measure geometric distance of 
word vectors as proxy to 
semantic similarity / 
relatedness  



Example
Target: a specific word 

Context: noun and verbs in the same 
sentence 

The dog barked in the park. The owner of 
the dog put him on the leash since he 
barked.

word count
bark 2
park 1
leash 1
owner 1

bark

leash

park

dog



Contexts
Ta

rg
et

s

Example

leash walk run owner leg bark

dog 3 5 1 5 4 2

cat 0 3 3 1 5 0

lion 0 3 2 0 1 0

light 0 0 1 0 0 0

dark 1 0 0 2 1 0

car 0 0 4 3 0 0



Example
Use cosine similarity as a measure of 
relatedness

bark

leash

park

dog

cat

car

cos ✓ =
x · y

kxkkyk =

Pn
i=1 xiyipPn

i=0 x
2
i

pPn
i=0 y

2
i

✓cos ✓



Similarity and Relatedness

Semantic similarity 
words sharing salient attributes / 
features 
• synonymy  (car / automobile) 
• hypernymy  (car / vehicle) 
• co-hyponymy  (car / van / truck)

Semantic relatedness 
words semantically associated 
without being necessarily similar 
• function  (car / drive) 
• meronymy  (car / tyre) 
• location  (car / road) 
• attribute  (car / fast)

(Budansky and Hirst, 2006)



Context
The meaning of a word can be defined in terms of its context (properties, 
features)

• Other words in the same document / paragraph /
sentence 

• Words in the immediate neighbors 

• Words along dependency paths 

• Linguistic patterns 

• Predicate-Argument structures 

• Frames 

• Hand crafted features 

Any process that builds a structure on sentences can be used as a source 
for properties

First attempt in 1960s in Charles Osgood’s semantic 
differentials, also used in first connectionist AI 
approaches in the 1980s



Context Examples 
Document

DOC1: The silhouette of the sun beyond a wide-open bay on the lake; the 
sun still glitters although evening has arrived in Kuhmo. It’s midsummer; 
the living room has its instruments and other objects in each of its corners. 

1

2



Context Examples 
Wide window

DOC1: The silhouette of the sun beyond a wide-open bay on the lake; the 
sun still glitters although evening has arrived in Kuhmo. It’s midsummer; 
the living room has its instruments and other objects in each of its corners.  

1

2



Context Examples 
Wide window (content words)

DOC1: The silhouette of the sun beyond a wide-open bay on the lake; the 
sun still glitters although evening has arrived in Kuhmo. It’s midsummer; 
the living room has its instruments and other objects in each of its corners.  

1

1

2

2

1

2



Context Examples 
Small window (content words)

DOC1: The silhouette of the sun beyond a wide-open bay on the lake; the 
sun still glitters although evening has arrived in Kuhmo. It’s midsummer; 
the living room has its instruments and other objects in each of its corners.  

1 12

2

1

2



Context Examples 
PoS coded content lemmas

1

1

2

2

1

2
DOC1: The silhouette/N of the sun beyond a wide-open/A bay/N on the 
lake/N; the sun still glitters/V although evening/N has arrive/V in Kuhmo. 
It’s midsummer; the living room has its instruments and other objects in 
each of its corners.  



Context Examples 
PoS coded content lemmas filtered by syntactic path

DOC1: The silhouette/N of the sun beyond a wide-open bay on the lake; the 

sun still glitters/V although evening has arrived in Kuhmo. It’s midsummer; 

the living room has its instruments and other objects in each of its corners.  

PPDEP

SUBJ



Context Examples 
Syntactic path coded lemmas

DOC1: The silhouette/N_PPDEP of the sun beyond a wide-open bay on the lake; 

the sun still glitters/V_SUBJ although evening has arrived in Kuhmo. It’s 

midsummer; the living room has its instruments and other objects in each of its 

corners.  

PPDEP

SUBJ



Effect of Context 
Neighbors of dog in BNC Corpus

2-word window  

cat 
horse 

fox 
pet 

rabbit 
pig 

animal 
mongrel 

sheep 
pigeon 

More paradigmatic More syntagmatic

30-word window  

kennel 
puppy 
pet 
bitch  
terrier 
rottweiler 
canine 
cat 
bark 
alsatian 



5-word window  

nondeterministic 
non-deterministic 
computability 
deterministic 
finite-state 

Syntactic dependencies 

Pauling 
Hotelling 

Heting 
Lessing 

Hamming 

Effect of Context 
Neighbors of Turing in Wikipedia

Co-hyponyms 
Paradigmatic

Topically related 
Syntagmatic



Weighting Schemes

So far we used raw counts 

Several other options for populating the 
target x context matrix are available 

In most cases Positive Pointwise Mutual 
Information is the best choice 

Kiela and Clark, A systematic study of 
Semantic Vector Space Parameters, 2014, 
is a good review

Measure Definition

Euclidean 1

1+
pPn

i=1(ui�vi)2

Cityblock 1
1+

Pn
i=1 |ui�vi|

Chebyshev 1
1+maxi |ui�vi|

Cosine u·v
|u||v|

Correlation (u�µu)·(v�µv)
|u||v|

Dice 2
Pn

i=0 min(ui,vi)Pn
i=0 ui+vi

Jaccard u·vPn
i=0 ui+vi

Jaccard2
Pn

i=0 min(ui,vi)Pn
i=0 max(ui,vi)

Lin
Pn

i=0 ui+vi
|u|+|v|

Tanimoto u·v
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Jensen-Shannon Div 1�
1
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2 )+D(v||u+v
2 ))

p
2 log 2

↵-skew 1� D(u||↵v+(1�↵)u)p
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Table 2: Similarity measures between vectors v
and u, where vi is the ith component of v

whether removing more context words, based on
a frequency cut-off, can improve performance.

3 Experiments

The parameter space is too large to analyse ex-
haustively, and so we adopted a strategy for how
to navigate through it, selecting certain parame-
ters to investigate first, which then get fixed or
“clamped” in the remaining experiments. Unless
specified otherwise, vectors are generated with the
following restrictions and transformations on fea-
tures: stopwords are removed, numbers mapped
to ‘NUM’, and only strings consisting of alphanu-
meric characters are allowed. In all experiments,
the features consist of the frequency-ranked first n
words in the given source corpus.

Four of the five similarity datasets (RG, MC,
W353, MEN) contain continuous scales of sim-
ilarity ratings for word pairs; hence we follow
standard practice in using a Spearman correlation
coefficient ⇢s for evaluation. The fifth dataset
(TOEFL) is a set of multiple-choice questions,
for which an accuracy measure is appropriate.
Calculating an aggregate score over all datasets
is non-trivial, since taking the mean of correla-
tion scores leads to an under-estimation of per-
formance; hence for the aggregate score we use
the Fisher-transformed z-variable of the correla-

Scheme Definition

None wij = fij

TF-IDF wij = log(fij)⇥ log( N
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PosMI max(0,MI)

T-Test wij =
P (tij |cj)�P (tij)P (cj)p
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�2 see (Curran, 2004, p. 83)

Lin98a wij =
fij⇥f

fi⇥fj

Lin98b wij = �1⇥ log
nj

N

Gref94 wij =
log fij+1

lognj+1

Table 3: Term weighting schemes. fij denotes the
target word frequency in a particular context, fi
the total target word frequency, fj the total context
frequency, N the total of all frequencies, nj the
number of non-zero contexts. P (tij |cj) is defined
as fij

fj
and P (tij) as fij

N .

tion datasets, and take the weighted average of
its inverse over the correlation datasets and the
TOEFL accuracy score (Silver and Dunlap, 1987).

3.1 Vector size

The first parameter we investigate is vector size,
measured by the number of features. Vectors are
constructed from the BNC using a window-based
method, with a window size of 5 (2 words either
side of the target word). We experiment with vec-
tor sizes up to 0.5M features, which is close to the
total number of context words present in the en-
tire BNC according to our preprocessing scheme.
Features are added according to frequency in the
BNC, with increasingly more rare features being
added. For weighting we consider both Positive
Mutual Information and T-Test, which have been
found to work best in previous research (Bullinaria
and Levy, 2012; Curran, 2004). Similarity is com-
puted using Cosine.



Similarity Measures

So far we used cosine similarity 

Several other options for computing 
similarity are available 

In most cases Correlation is the best 
choice (cosine similarity of vectors 
normalized by their mean) 

Kiela and Clark, A systematic study of 
Semantic Vector Space Parameters, 2014, 
is a good review

Measure Definition

Euclidean 1

1+
pPn

i=1(ui�vi)2

Cityblock 1
1+

Pn
i=1 |ui�vi|

Chebyshev 1
1+maxi |ui�vi|

Cosine u·v
|u||v|

Correlation (u�µu)·(v�µv)
|u||v|

Dice 2
Pn

i=0 min(ui,vi)Pn
i=0 ui+vi

Jaccard u·vPn
i=0 ui+vi

Jaccard2
Pn

i=0 min(ui,vi)Pn
i=0 max(ui,vi)

Lin
Pn

i=0 ui+vi
|u|+|v|

Tanimoto u·v
|u|+|v|�u·v

Jensen-Shannon Div 1�
1
2 (D(u||u+v

2 )+D(v||u+v
2 ))

p
2 log 2

↵-skew 1� D(u||↵v+(1�↵)u)p
2 log 2

Table 2: Similarity measures between vectors v
and u, where vi is the ith component of v

whether removing more context words, based on
a frequency cut-off, can improve performance.

3 Experiments

The parameter space is too large to analyse ex-
haustively, and so we adopted a strategy for how
to navigate through it, selecting certain parame-
ters to investigate first, which then get fixed or
“clamped” in the remaining experiments. Unless
specified otherwise, vectors are generated with the
following restrictions and transformations on fea-
tures: stopwords are removed, numbers mapped
to ‘NUM’, and only strings consisting of alphanu-
meric characters are allowed. In all experiments,
the features consist of the frequency-ranked first n
words in the given source corpus.

Four of the five similarity datasets (RG, MC,
W353, MEN) contain continuous scales of sim-
ilarity ratings for word pairs; hence we follow
standard practice in using a Spearman correlation
coefficient ⇢s for evaluation. The fifth dataset
(TOEFL) is a set of multiple-choice questions,
for which an accuracy measure is appropriate.
Calculating an aggregate score over all datasets
is non-trivial, since taking the mean of correla-
tion scores leads to an under-estimation of per-
formance; hence for the aggregate score we use
the Fisher-transformed z-variable of the correla-

Scheme Definition

None wij = fij

TF-IDF wij = log(fij)⇥ log( N
nj

)

TF-ICF wij = log(fij)⇥ log(N
fj
)

Okapi BM25 wij =
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P (tij)P (cj)

PosMI max(0,MI)
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P (tij)P (cj)

�2 see (Curran, 2004, p. 83)

Lin98a wij =
fij⇥f

fi⇥fj

Lin98b wij = �1⇥ log
nj

N

Gref94 wij =
log fij+1

lognj+1

Table 3: Term weighting schemes. fij denotes the
target word frequency in a particular context, fi
the total target word frequency, fj the total context
frequency, N the total of all frequencies, nj the
number of non-zero contexts. P (tij |cj) is defined
as fij

fj
and P (tij) as fij

N .

tion datasets, and take the weighted average of
its inverse over the correlation datasets and the
TOEFL accuracy score (Silver and Dunlap, 1987).

3.1 Vector size

The first parameter we investigate is vector size,
measured by the number of features. Vectors are
constructed from the BNC using a window-based
method, with a window size of 5 (2 words either
side of the target word). We experiment with vec-
tor sizes up to 0.5M features, which is close to the
total number of context words present in the en-
tire BNC according to our preprocessing scheme.
Features are added according to frequency in the
BNC, with increasingly more rare features being
added. For weighting we consider both Positive
Mutual Information and T-Test, which have been
found to work best in previous research (Bullinaria
and Levy, 2012; Curran, 2004). Similarity is com-
puted using Cosine.



Evaluation
Intrinsic 

• evaluate word pairs 
similarities → compare with 
similarity judgments given by 
humans (WordSim, MEN, 
Mechanical Turk, SImLex) 

• evaluate on analogy tasks 
"Paris is to France as Tokyo is to 
x" (MSR analogy, Google 
analogy)

Extrinsic 
• use the vectors in a 

downstream task 
(classification, translation, ...) 
and evaluate the final 
performance on the task



Best parameters configuration? 
(context, similarity measure, weighting, ...)



Depends on the task!



Methods overview



Methods
Semantic Differential (Osgood at al. 1957) 

Semantic features (Smith at al. 1974) 

Mechanisms of sentence processing assigning 
roles to constituents (McLelland and Kawamoto 
1986) 

Learning Distributed Representations of Concepts 
(Hinton et al. 1986) 

Forming Global Representations with Extended 
Back-Propagation [FGREP] (Mikkulainen and Dyer 
1987) 

Sparse Distributed Memory [SDM] (Kanerva 1988) 

Latent Semantic Analysis [LSA] (Deerwester et 
al.1988-1990) 

Hyperspace Analogue to Language [HAL] (Lund 
and Burgess 1995)  

Probabilistic Latent Semantic Analysis [pLSA] 
(Hoffman et al. 1999) 

Random Indexing (Kanerva et al. 2000) 

Latent Dirichlet Allocation [LDA] (Blei et al. 2003) 

A neural probabilistic language model (Bengio et al. 
2003)  

Infomap (Widdows et al. 2004) 

Correlated Occurrence Analogue to Lexical 
Semantic [COALS] (Rohde et al. 2006) 

Dependency Vecotrs (Padó and Lapata 2007) 

Explicit Semantic Analysis (Gabrilovich and 
Markovich 2007) 

Distributional Memory (Baroni and Lenci 2009) 

Non-Negative Matrix Factorization [NNMF] (Van 
de Cruys et al. 2010) originally: (Paatero and Tapper 
1994) 

JoBimText (Biemann and Riedl 2013) 

word2vec [SGNS and CBOW] (Mikolov et al. 2013) 

vLBL and ivLBL (Mnih and Kavukcuoglu 2013)  

Hellinger PCA (HPCA) (Lebret and Collobert 2014) 

Global Vectors [GloVe] (Pennington et al. 2014) 

Infinite Dimensional Word Embeddings (Nalisnick 
and Ravi 2015) 

Gaussian Embeddings (Vilnis and McCallum 2015) 

Diachronic Word Embeddings (Hamilton et al. 
2016) 

WordRank (Ji et al. 2016) 

Exponential Family Embeddings (Rudolph et al. 
2016) 

Multimodal Word Distributions (Athiwaratkun and 
Wilson 2017) 

...



Explicit vs Implicit

Explicit vectors: big sparse vectors with 
interpretable dimensions 

Implicit vectors: small dense vectors 
with latent dimensions 

Count vs Prediction 

Alessandro Lenci, Distributional models of 
word meaning, 2017

Distributional Semantic Models

Count models

Matrix models Random encoding models

Prediction models

distributional representations

explicit vectors implicit vectors

Distributional Semantic Models

Word models
(lexemes)

Window-based models
(window-based collocates)

Syntactic models
(syntactic collocates)

Region models
(text regions)

Figure 2

A classification of DSMs based on (left) context types and (right) methods to build distributional vectors

Table 2 Most common matrix DSMs.

Model name Description

Latent Semantic Analysis (LSA)a word-by-region matrix, weighted with entropy and reduced with SVD

Hyperspace Analogue of Language (HAL)b window-based model with directed collocates

Dependency Vectors (DV)c syntactic model with dependency-filtered collocates

Latent Relational Analysis (LRA)d pair-by-pattern matrix reduced with SVD to measure relational similarity

Distributional Memory (DM)e target–link–context tuples formalized with a high-order tensor

Topic Modelsf word-by-region matrix reduced with Bayesian inference

High Dimensional Explorer (HiDEx)g generalization of HAL with a larger range of parameter settings

Global Vectors (GloVe)h word-by-word matrix reduced with weighted least squares regression

aLandauer & Dumais (1997); bBurgess (1998); cPadó & Lapata (2007); dTurney (2006); eBaroni & Lenci

(2010); fGri�ths et al. (2007); gShaoul & Westbury (2010); hPennington et al. (2014).

shown that narrow context windows and syntactic collocates are best to capture lexemes

related by paradigmatic semantic relations (e.g., synonyms and antonyms) or belonging to

the same taxonomic category (e.g., violin and guitar), because they share very close collo-

cates (Sahlgren 2006; Bullinaria & Levy 2007; Van de Cruys 2008; Baroni & Lenci 2011;

Bullinaria & Levy 2012; Kiela & Clark 2014; Levy & Goldberg 2014a). Conversely, collo-

cates extracted with larger context windows are biased towards more associative semantic

relations (e.g., violin and music), like region models.

The second dimension of variation among DSMs is the method to learn distributional

representations. Matrix models (see Table 2) are a rich family of DSMs that generalize the

vector space model in information retrieval (see Section 2). They are a subtype of so-called

count models (Baroni et al. 2014b), which learn the representation of a target lexeme by

recording and counting its co-occurrences in linguistic contexts. Matrix models arrange

distributional data into co-occurrence matrices. The matrix is a formal representation of

the global distributional statistics extracted from the corpus. The weighting functions use

such global statistics to estimate the importance of co-occurrences to characterize target

www.annualreviews.org • Distributional semantics 9



Hyperspace Analogue 
to Language [HAL] 

Target: a specific word 

Context: window of ten words 

Weighting: (10 - distance from target) for 
each occurrence 

Similarity: euclidean distance 

Dimensionality reduction: sort contexts 
(columns of the matrix) by variance and 
keep top 200

the dog barked at the cat 

weight dog barked= 10  (no gap) 

weight dog cat = 7  (3 words gap)

c2 c7 ... c3 c5 ... ... c6

w1 54 23 ... 8 4 ... ... 1

w1 21 82 ... 10 6 ... ... 0

... ... ... ... ... ... ... ... ...

wn 32 47 ... 9 3 ... ... 1

variance 30 25 ... 5 3 ... ... 0,5

201+ discardtop 200 keep



Hyperspace Analogue to Language

Advantages 

• Simple 

• Fast O(n)

Disadvantages 

• No higher order interactions (only 
direct co-occurrence)



Latent Semantic 
Analysis [LSA]

Target: a specific word 

Context: document id 

Weighting: tf-idf (term frequency - inverse 
document frequency), but can use others 

Similarity: cosine 

Dimensionality reduction: Singular Value 
Decomposition (SVD)

weightij = log(fij) · log(
N

nj
)

frequency of word j in 
document i

total documents over 
documents containing word j

Intuition: the more frequency in the document, the better. The 
less frequent in the corpus, the better

TF IDF



SVD in a nutshell

documents

te
rm

s

W
m x n

U
m x m

𝝨
m x n

V
n x n

=

rank k < r

kk k

Intuition 
keep top k singular values as they contain most of the variance 
k can be interpreted as the number of topics

W = Uk⌃kV
>
k

Target matrix
TSV D = Uk⌃k

TSV D = Uk

Context matrix

Trick from (Levy at al. 
2015): throw 𝝨 away for 
better performance

C
n x k

topics

do
cu

m
en

ts

T
m x k

topics

te
rm

s

CSV D = V >
k



Latent Semantic Analysis

Advantages 

• Reduced dimension k can be 
interpreted as topics 

• Reducing the number of columns 
unveils higher order interactions

Disadvantages 

• Static → can't easily add new 
documents, words and topics 

• SVD is one time operation, without 
intermediate results 

• Expensive in terms of memory and 
computation O(k2m)



Random Indexing [RI]

Locality-sensitive hashing method that 
approximates the distance between 
points 

Generates random matrix R and projects 
the original matrix A to it to obtain a 
reduced matrix B 

Reduced space B preserves the euclidean 
distance between points in original space 
A (Johnson-Lindenstrauss lemma)

Bn,k ⇡ An,mRm,k k ⌧ m

(1� ✏)dr(v, u)  d(v, u)  (1 + ✏)dr(v, u)

A

B
d

dr

u
u

v v



Random Indexing [RI]

Algorithm 

• For every word in the corpus create a 
sparse random context vector with 
values in {-1, 0, 1} 

• Target vectors are the sum of the 
context vectors of the words they co-
occur with multiplied by the frequency 
of the co-occurrence

1 0I 0 0 0 -1 0

drink 0 0 1 0 0 0 0

I drink beer
You drink a glass of beer

Dataset

Context Vectors

beer 0 1 0 0 0 0 0

you 0 -1 0 0 0 0 1

glass -1 0 0 0 1 0 0

tvbeer  = 1cvi + 2cvdrink + 1cvyou + 1cvglass

Term Vectors

beer 0 -1 2 0 1 -1 1

Context Vectors

Target Vectors

Dataset

I drink beer
You drink a glass of beer



Random Indexing

Advantages 

• Fast O(n) 

• Incremental → can add new words 
any time, just create a new 
context vector

Disadvantages 

• In many intrinsic tasks doesn't 
perform as well as other methods 

• Stochasticity in the process → 
random distortion 

• Negative similarity scores



Explicit Semantic 
Analysis [ESA]
Target: a specific word 

Context: Wikipedia article 

Assumption: Wikipedia articles are 
explicit topics 

Weighting: tf-idf 

Similarity: cosine 

Dimensionality Reduction: discard too 
short articles and articles with only few 
other articles linking to them

Mouse 
[Rodent]

Mouse 
[computing]

Mickey 
Mouse Button Janson 

Button
Drag and 

Drop

mouse 0,95 0,89 0,81 0,50 0,01 0,60

button 0,10 0,81 0,20 0,95 0,89 0,70

mouse 
button 0,50 0,85 0,50 0,72 0,45 0,65

average of 2 vectors → emerges disambiguated meaning

cat leopard jaguar car animal button

Panther 0,83 0,72 0,65 0,3 0,92 0,01



Explicit Semantic Analysis

Advantages 

• Simple 

• Fast O(n) 

• Interpretable

Disadvantages 

• The assumption doesn't 
always hold 

• Doesn't perform as good as 
other methods 

• Vectors are really high 
dimensional, although quite 
sparse



JoBimText

Generic holing @ operation 

Apply it to any tuple to obtain 
targets (jo) and contexts (bim) 

Weighting: custom measure similar 
to Lin 

Similarity: Lexicographer Mutual 
Information (PMI x Frequency) 
(Kilgarriff et al. 2004)

target context
I (nsubj, gave, @)

gave (nsubj, @, I)

a (det, book, @)

book (det, @, a)

... ...

girl (prep_to, gave, @)

gave (prep_to, @, girl)

Input tuple
(nsubj, gave, I)

(det, book, a)

(dobj, gave, book)

(det girl, the)

(prep_to, gave, girl)

target context
I (@, gave, a, book)

gave (I, @, a, book)

a (I, gave, @, book)

book (I, gave, a, @)

... ...

the (book, to, @, girl)

girl (book, to, the, @)

Input tuple
(I, gave, a, book)

(gave, a, book, to)

(a, book, to, the)

(book, to, the, girl)



JoBimText

Advantages 

• Generic preprocessing operation 
deals with many context 
representations and types of data 

• Deals with complex contexts 
(example: several steps in a tree)

Disadvantages 

• No dimensionality reduction → 
vectors are high dimensional 

• No uncovering of higher order 
relations 

• MapReduce implementation only 
effective on clusters



word2vec

Skip Gram with Negative Sampling 
(SGNS) 

Target: a specific word 

Context: window of n words 

Vectors are obtained training the model 
to predict the context given a target 

The error of the prediction is back-
propagated and the vectors updated Probability that if you 

randomly pick a word nearby 
"ant" you will get "car"

eTiCj

P
eTiCj

X T X C

Target vectors Context vectorsinput

→

output

→→

hidden softmax

300 dimensions

30
0 

di
m

en
sio

ns

X →
Target vector for "ants"

Context vector for "car"

eTiCj

P
eTiCj

softmax



Example

X

The quick brown fox jumps over the lazy dog

T X
C

Target vectors Context vectors

the

one 
hot

softmax→
brown

fox

quick
jumps

over

dog
lazy

the

brown
fox

quick
jumps

over

dog
lazy

prediction

the

brown
fox

quick
jumps

over

dog
lazy

ground 
truth

They should be the same

→→

hidden



Example

X

The quick brown fox jumps over the lazy dog

T X
C

Target vectors Context vectors

the

one 
hot

softmax→
brown

fox

quick
jumps

over

dog
lazy

the

brown
fox

quick
jumps

over

dog
lazy

prediction

the

brown
fox

quick
jumps

over

dog
lazy

ground 
truth

They are different 
Back-propagate the error and update 
the vectors to improve prediction

→ →



Example Negative Sampling

The quick brown fox jumps over the lazy dog

Calculating the full softmax is expensive 
because of large vocabulary

1. Create pairs of target and context 
words and predict the probability of 
them co-occurring to be 1

2. Sample false context words from their 
unigram distribution and predict the 
probability of them co-occurring with true 
target word to be 0

(fox, quick) → 1 
(fox, brown) → 1 
(fox, jumps) → 1 
(fox, over) → 1

(fox, quick) → 1 
(fox, brown) → 1 
(fox, jumps) → 1 
(fox, over) → 1 

(fox, the) → 0 
(fox, lazy) → 0 
(fox, dog) → 0 
(fox, the) → 0



Negative Sampling Loss (NCE)

Number of 
negative 
samples

target context Sample from 
the distribution 
of words

Vector of the 
negative 
sample

log �(Ti · Cj) +
nX

E
k⇠P (w)

log �(�Tk · Cj)



SGNS as matrix factorization

= ?

W
or

ds

Contexts

Features

Fe
at

ur
es

X

Target vectors Context vectors



SGNS as matrix factorization

W
or

ds

Contexts

�log(k)= PMIX

W
or

ds

Contexts

Features

Fe
at

ur
es

Target vectors Context vectors

Neural Word Embedding as Implicit Matrix Factorization (Levy and Goldberg 2014)



word2vec

Advantages 

• Iterative way for factorizing a matrix 

• Fast O(nm), great implementations 

• Several parameters to improve 
performance (negative samples, 
subsampling of frequent words, ...) 

• Default parameters can go a long way

Disadvantages 

• Inflexible definition of context 

• Doesn't use dataset statistics in a 
smart way 

• Columns are hard to interpret as 
topics



Are neural word embeddings better than classic DSMs?

Yes 
With vanilla 
parameters 

Baroni et al., Don’t count, 
predict! A systematic 
comparison of context- 
counting vs. context-
predicting semantic vectors, 
2014

No 
With optimal 
parameters 

Levy et al., Improving 
Distributional Similarity with 
Lessons Learned from Word 
Embeddings, 2015

Maybe 
Trained on 1 billion+ 
words 

Sahlgren and Lenci, The 
Effects of Data Size and 
Frequency Range on 
Distributional Semantic 
Models , 2016



GloVe

Explicit factorization of target x contexts 
matrix 

Precomputes the matrix (unlike SGNS) 

Uses directly the statistics of the dataset 
(frequencies of co-occurrences) 

J =
X

i,j

f(Wij)(w
>
i w̃j � logWij)

2

frequency of word 
i in context j

target context like SGNS

W
or

ds

Contexts

= WX

Words Contexts

W
or

ds

Contexts

Features

Fe
at

ur
es



GloVe

Advantages 

• Better use of dataset statistics 

• Converges to good solutions with 
less data 

• Simple to apply on different 
contexts 

Disadvantages 

• Recent comparisons show that on 
many tasks it doesn't perform as 
well as LSA or SGNS



Self-Supervised Learning



Compositionality

So far we represented words as 
vectors, how to represent 
sentences? 

Can't use the co-occurrences of 
sentences in their context as 
sentences are sparse, most of 
them occur once 

Should represent their meaning 
combining word representations 

The meaning of an utterance is a 
function of the meaning of its parts 
and their composition rules - Gottlob 
Frege, Über Sinn und Bedeutung, 
1892



Composition operators

Simple solution, just sum the vectors of 
the words in a sentence! 

Other operators: product, weighted sum, 
convolution, ... (Mitchell and Lapata, 
2008) 

It's hard to perform better than the 
simple sum 

Sum can't be the real answer as it's 
commutative → doesn't consider word 
order

drive

car

I drive a car



Learn to compose
Recursive Matrix Vector 
Network (Socher at al. 2012)

Recursive Neural Tensor 
Network (Socher et al. 2013)

Recurrent Neural Network 
(Elman 1990) and others

C

X

oi-1 wi

sentence[w1, …, wi]
oi on

C

X

…

…

…

w1 w2 wn

sentence

[w1, w2]

C

X

…

…

…

w1 w2 wn

sentence

[w1, w2]

X

+

vector matrix tensor

CX+

sum product concatLe
ge

nd



Language Modeling

The quick brown fox jumps over the lazy dog

P (s) =

|s|Y

i

P (si|s1, . . . , si�1)

<latexit sha1_base64="shg6GpSk+98iR8pe6i/KzYQHS+E="></latexit>

si

<latexit sha1_base64="PgnpIueoK3bSydpraTrCGUYJLz8=">AAAB9XicdVDLTgJBEJzFF+ILNfHiZSIx8bTZRQhwI3jxCFEeCRAyOzQ4cfaRmV4NIXyCVz15M96MP+FPeNBvcQBN1GidKlXd6eryIik0Os6rlVhYXFpeSa6m1tY3NrfS2zsNHcaKQ52HMlQtj2mQIoA6CpTQihQw35PQ9C5Ppn7zCpQWYXCOowi6PhsGYiA4QyOd6Z7opTOOXSyUsrkidex8oZjLZQ1x8/n8cYm6tjNDprxXexdPlZdqL/3W6Yc89iFALpnWbdeJsDtmCgWXMEl1Yg0R45dsCG1DA+aD7o5nUSf0MNYMQxqBokLSmQjfN8bM13rke2bSZ3ihf3tT8S+vHeOg2B2LIIoRAj49hELC7JDmSpgOgPaFAkQ2TQ5UBJQzxRBBCco4N2JsSkmZPr6epv+TRtZ2c3apZoqpkDmSZJ8ckCPikgIpk1NSJXXCyZDckFtyZ11b99aD9TgfTVifO7vkB6znD5ublmE=</latexit>

s1, . . . , si�1

<latexit sha1_base64="L5RWyTr19ZS7KK/fwBTYudCJVeU="></latexit>



Bidirectional Language Modeling

The quick brown fox jumps over the lazy dog

P (s) =

|s|Y

i

P (si|s1, . . . , si�1)

<latexit sha1_base64="shg6GpSk+98iR8pe6i/KzYQHS+E="></latexit>

si

<latexit sha1_base64="PgnpIueoK3bSydpraTrCGUYJLz8=">AAAB9XicdVDLTgJBEJzFF+ILNfHiZSIx8bTZRQhwI3jxCFEeCRAyOzQ4cfaRmV4NIXyCVz15M96MP+FPeNBvcQBN1GidKlXd6eryIik0Os6rlVhYXFpeSa6m1tY3NrfS2zsNHcaKQ52HMlQtj2mQIoA6CpTQihQw35PQ9C5Ppn7zCpQWYXCOowi6PhsGYiA4QyOd6Z7opTOOXSyUsrkidex8oZjLZQ1x8/n8cYm6tjNDprxXexdPlZdqL/3W6Yc89iFALpnWbdeJsDtmCgWXMEl1Yg0R45dsCG1DA+aD7o5nUSf0MNYMQxqBokLSmQjfN8bM13rke2bSZ3ihf3tT8S+vHeOg2B2LIIoRAj49hELC7JDmSpgOgPaFAkQ2TQ5UBJQzxRBBCco4N2JsSkmZPr6epv+TRtZ2c3apZoqpkDmSZJ8ckCPikgIpk1NSJXXCyZDckFtyZ11b99aD9TgfTVifO7vkB6znD5ublmE=</latexit>

s1, . . . , si�1

<latexit sha1_base64="L5RWyTr19ZS7KK/fwBTYudCJVeU="></latexit>

P (si|si+1, . . . , s|S|)

<latexit sha1_base64="0glSI6JrGWCO7vvfRFbO250BSCU="></latexit>

si

<latexit sha1_base64="PgnpIueoK3bSydpraTrCGUYJLz8=">AAAB9XicdVDLTgJBEJzFF+ILNfHiZSIx8bTZRQhwI3jxCFEeCRAyOzQ4cfaRmV4NIXyCVz15M96MP+FPeNBvcQBN1GidKlXd6eryIik0Os6rlVhYXFpeSa6m1tY3NrfS2zsNHcaKQ52HMlQtj2mQIoA6CpTQihQw35PQ9C5Ppn7zCpQWYXCOowi6PhsGYiA4QyOd6Z7opTOOXSyUsrkidex8oZjLZQ1x8/n8cYm6tjNDprxXexdPlZdqL/3W6Yc89iFALpnWbdeJsDtmCgWXMEl1Yg0R45dsCG1DA+aD7o5nUSf0MNYMQxqBokLSmQjfN8bM13rke2bSZ3ihf3tT8S+vHeOg2B2LIIoRAj49hELC7JDmSpgOgPaFAkQ2TQ5UBJQzxRBBCco4N2JsSkmZPr6epv+TRtZ2c3apZoqpkDmSZJ8ckCPikgIpk1NSJXXCyZDckFtyZ11b99aD9TgfTVifO7vkB6znD5ublmE=</latexit>

si+1, . . . , s|S|

<latexit sha1_base64="rH9iPN4YfdJbb18JB58zK1JefhQ="></latexit>



Bidirectional Language Modeling (ELMo)

LSTM1→ LSTM1←

LSTM2→ LSTM2←

s1 ... si ... s|S|

s1 ... si ... s|S|Target

Context

Deep Contextualized Word Representations (Clark et al. 2017)



Masked Language Modeling (BERT)

Sample 1: The quick brown fox jumps over the lazy dog

Sample 2: The quick brown fox jumps over the lazy dog

Sample 3: The quick brown fox jumps over the lazy dog

Sample 4: The quick brown fox jumps over the lazy dog



Masked Language Modeling (BERT)

Transformer1

TransofrmerN

s1 MASK si MASK MASK

MASK ... MASK ... s|S|Target

Context

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Delvin at al. 2017)



Embeddings for Graphs



Embeddings for Graphs

Target
Context



Graph Representation Learning

DeepWalk (Perozzi et al. 2014) 

node2vec (Grover and Leskovec 2016) 

GraphSage (Hamilton at el. 2017) for supervised tasks, but same principle 

Many papers of Knowledge Graphs (Nickel et al. 2015 for a review)



Computer Vision

"Enzo" by ElinaLt is licensed under CC BY-ND 2.0

Inpainting

NN

TargetContext

Context Encoders: Feature Learning by Inpainting (Pathak at al. 2016)



Computer Vision
Denoising Autoencoders

NN

TargetContext

Noise is a kind of "soft mask"

Extracting and Composing Robust Features with Denoising Autoencoders (Vincent at al. 2008)

"Enzo" by ElinaLt is licensed under CC BY-ND 2.0



Reinforcement Learning

World Models (Ha and Schmidhuber 2008)
Making the World Differentiable: On Using Self-Supervised Fully Recurrent Neural Networks for Dynamic Reinforcement Learning and Planning in Non-Stationary Environments (Schmidhuber 1990)

RNN

z1,, a1 ... zi, ai

z2 ... zi+1

RNN RNN

MDN MDN MDN

Target: how the world will look 
like in the futere if I take action ai

Context: how the world looks 
like in the past unitl now



Video

Tracking moving objects (Wang and Gupta 2015) 

Frame order validation (Misra et al. 2016) 

Video colorization (Vodrick at el. 2018)



Conclusions

Structuralism can be a unifying interpretation 
for why many learning algorithms work 

Many aspects of reality can be modeled in 
terms of targets and contexts 

Context is king 

Self-Supervised Learning is "just" applied 
structuralism
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