# Semantic Models for Answer Re-ranking in Question Answering

Piero Molino - <u>piero.molino@uniba.it</u> Università degli Studi di Bari Aldo Moro

# Question Answering (QA)

- \* **Query** = Natural Language Question
- \* **Result** = Exact Answer or Short Passage

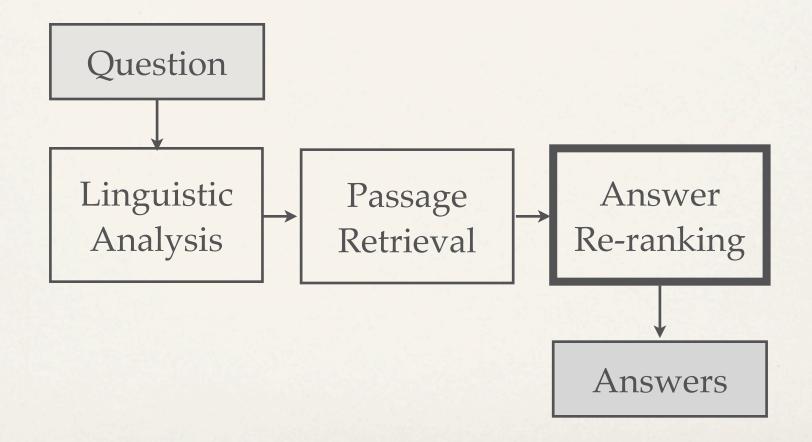
- \* Who's the adoptive son of Julius Cesar?
- \* Here we see Brutus, the adoptive son of Julius Cesar, hitting him with a dagger

# Non-factoid QA

- \* Factoid
  - \* Who, Where, When
  - Answers are Named Entities, dates or numbers
  - Needs structured data or extraction from unstructured data

- Non-factoid
  - Causation, manner, reason
  - Answers are sentences or paragraphs
  - Needs NLP for question-answer similarity

#### **General** Architecture



# Learning to Rank (MLR)

- \* Learn the Ranking Function from Question-Answer
- \* Represent Question-Answer pair as a datapoint with
  - \* Question specific and Answer spacific features (lenght, category, type of origin document, ...)
  - \* Question-Answer features (different similarity measures, TFIDF, BM25, N-gram overlap, Machine Translation, structural similarity, ...)

#### Semantic Models

- \* Exploit latent or explicit concepts rather than words
- Widely used in IR and Computational Linguistic for semantic text similarity, synonyms detection, query expansion, topic identification, ...
- Latent Semantic Analysis, Random Indexing, Latent Dirichlet Allocation, Non-negative Matrix Factorization, Explicit Semantic Analysis

## **Research Questions**

- \* Are additional semantic features useful for answer reranking?
- \* Which of them is more effective and under which circumstances?
- \* Do semantic features bring information that is not present in the bag-of-words and structured features?

### Work Done

- \* Implement a QA System with NLP pipeline and MLR
- \* Add semantic features from Distributional Semantic Models (LSA and RI)
- Perform a preliminary experiment with a subset of features
- \* Add more similarity, linguistic and semantic features
- \* Experiment different MLR algorithms on different dataset

# Distributional Semantics

- The meaning of a word is determined by its usage
- A bottle of **Tesgüino** is on the table Everyone likes **Tesgüino Tesgüino** makes you drunk We make **Tesgüino** out of corn
- \* It is a corn beer



#### **Distributional Semantic Models**

- \* Represent words as points in a geometric space
- \* **Do not require** specific text operations (corpus/ language independent)
- \* Widely used in IR and Computational Linguistic
- \* Never been used for answer re-ranking

# Objective

- Semantic similarity
  between Question and
  Answer
- Computed with Distributional Semantic Models
- \* Used as re-rank feature

- \* Q: Which beverages contain alcohol?
- A: Tesgüino makes you drunk

#### **Co-occurrence** Matrix

\* Term-term co-occurrence matrix: contains the cooccurrences between terms within a prefixed distance

|          | dog | cat | computer | animal | mouse |
|----------|-----|-----|----------|--------|-------|
| dog      | 0   | 4   | 0        | 2      | 1     |
| cat      | 4   | 0   | 0        | 3      | 5     |
| computer | 0   | 0   | 0        | 0      | 3     |
| animal   | 2   | 3   | 0        | 0      | 2     |
| mouse    | 1   | 5   | 3        | 2      | 0     |

# Approximations

- \* **TTM**: Term-Term co-occurrence Matrix
- \* Latent Semantic Analysis (LSA): TSVD of the cooccurrence matrix
- \* **Random Indexing** (RI): based on the Random Projection
- \* Latent Semantic Analysis over Random Indexing (LSARI)

# Random Indexing

- \* RI is a locality-sensitive hashing method which approximate the cosine distance between vectors
- \* Generate and assign a Context Vector to each context element (e.g. document, passage, term, ...) with K random values in {-1, 0, +1}
- \* Term Vector is the **sum** of the Context Vectors of all contexts in which the term **occurs**

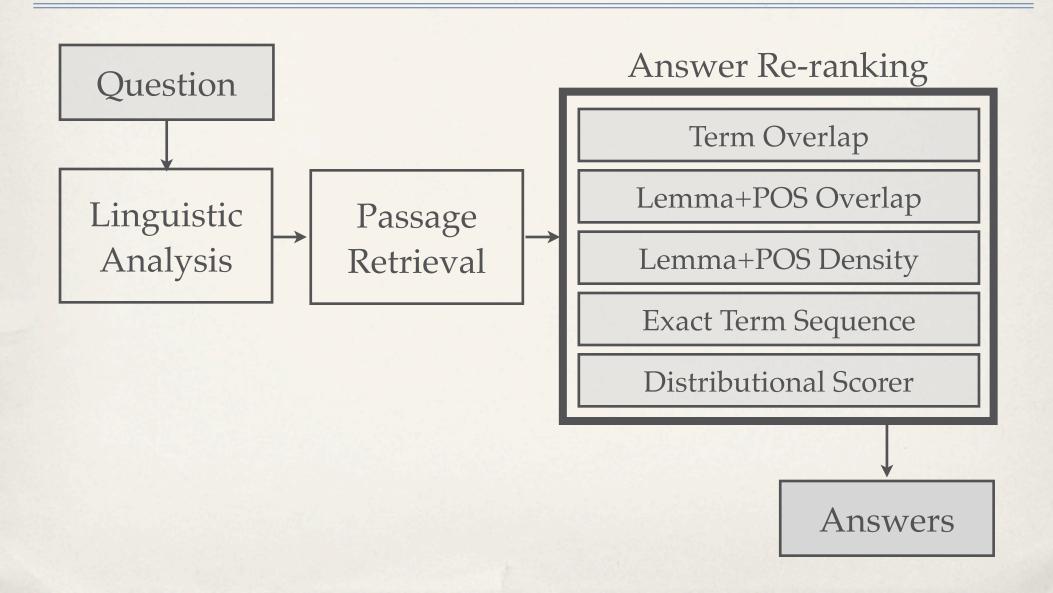
# Random Indexing

#### Dataset: I drink **Tesgüino** You drink **Tesgüino** beer

| Conte    | ext | Veo | cto | <b>CS</b> |   |    |   |
|----------|-----|-----|-----|-----------|---|----|---|
| i        | 1   | 0   | 0   | 0         | 0 | -1 | 0 |
| drink    | 0   | 0   | 1   | 0         | 0 | 0  | 0 |
| tesgüino | 0   | 1   | 0   | 0         | 0 | 0  | 0 |
| you      | 0   | -1  | 0   | 0         | 0 | 0  | 1 |
| beer     | -1  | 0   | 0   | 0         | 1 | 0  | 0 |

Term Vector for Tesgüino $1 \cdot cv_i + 2 \cdot cv_{drink} + 1 \cdot cv_{you} + 1 \cdot cv_{beer}$ tesgüino0-1201-1

### **Distributional Scorer**



# Compositionality

- \* We need a method to represent question and answers, as they are **composed** by more than one term
- Addition (+): sum of all the vectors of the terms in the question or answer
- \* Compute the **cosine similarity** between the summed vectors
- \* Other operators can be used (product, max, min, convolution, ...)

#### Evaluation

- \* Dataset: 2010 CLEF QA Competition
  - \* **10.700 documents** from European Union legislation and European Parliament transcriptions
  - \* 200 questions in English and Italian
- \* DSMs
  - \* 1000 vector dimension (TTM/LSA/RI/LSARI)
  - \* 50.000 most frequent words
  - Co-occurrence distance: 4

# **Objective and Metrics**

- \* Effectiveness of DSMs for the task
- \* Comparison between the several DSMs adopted
- \* Metrics
  - \* a@n: accuracy taking into account only the first n answers
  - \* MRR: average of the inverse rank of the first correct answer

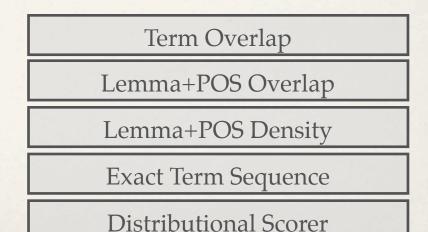
## Scenarios

#### Alone

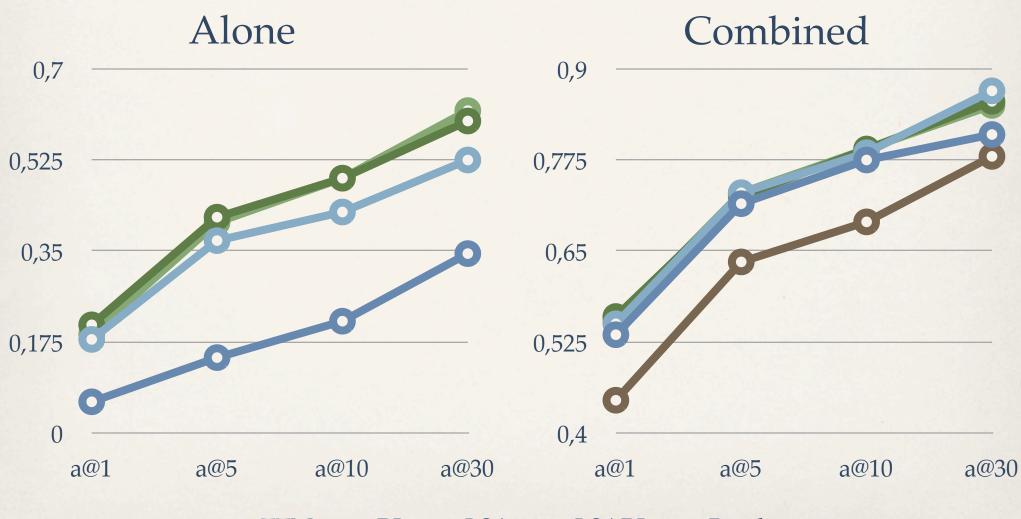
 Only the Distributional scorer is adopted, no other scorers in the pipeline

| Term Overlap<br>Lemma+POS Overlap |
|-----------------------------------|
| Lemma+POS Density                 |
| Exact Term Sequence               |
| Distributional Scorer             |

- Combined
- Distributional scorer and others with CombSum
- Baseline: distributional filter is removed

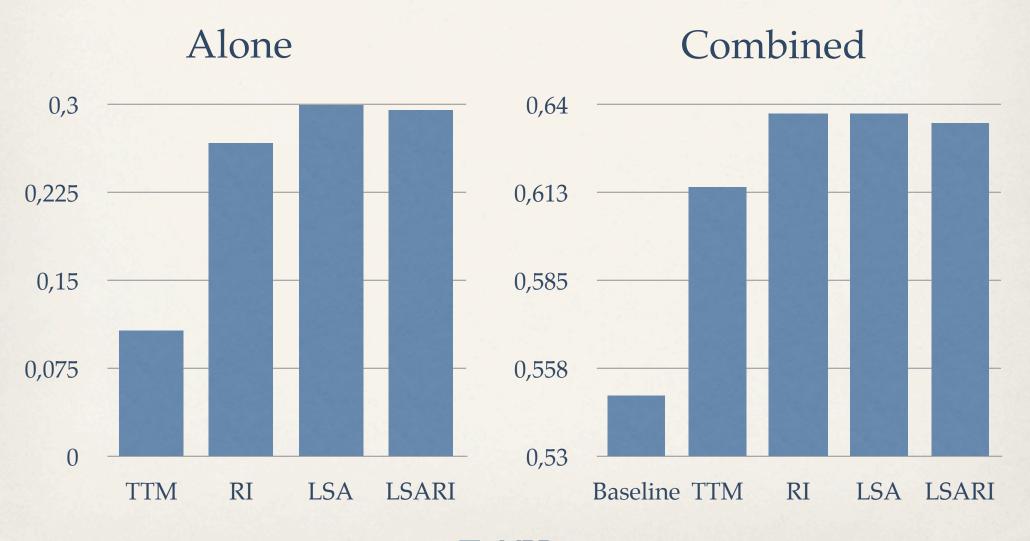


## Results (English) a@n



◆ TTM ◆ RI ◆ LSA ◆ LSARI ◆ Baseline

# Results (English) MRR



MRR

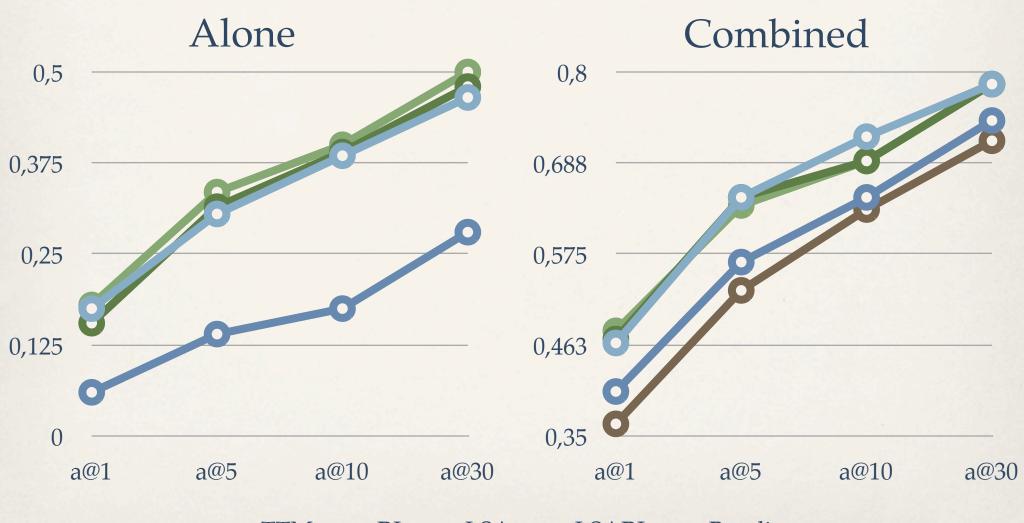
# Results (English)

| Run             | a@1              | a@5                                             | a@10                                                                       | a@30                                                                                                  | MRR                                                                  |
|-----------------|------------------|-------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| ТТМ             | 0.060            | 0.145                                           | 0.215                                                                      | 0.345                                                                                                 | 0.107                                                                |
| RI              | 0.180            | 0.370                                           | 0.425                                                                      | 0.535                                                                                                 | 0.267‡                                                               |
| LSA             | 0.205            | 0.415                                           | 0.490                                                                      | 0.600                                                                                                 | 0.300 <sup>‡</sup>                                                   |
|                 | 0 100            | 0.405                                           | 0.490                                                                      | 0.620                                                                                                 | 0.295‡                                                               |
| LSARI           | 0.190            | 0.405                                           | 0.430                                                                      | 0.020                                                                                                 | 0.235                                                                |
| baseline        | 0.445            | 0.635                                           | 0.690                                                                      | 0.780                                                                                                 | 0.549                                                                |
|                 |                  |                                                 |                                                                            |                                                                                                       |                                                                      |
| baseline        | 0.445            | 0.635                                           | 0.690                                                                      | 0.780                                                                                                 | 0.549                                                                |
| baseline<br>TTM | 0.445<br>0.535   | 0.635<br>0.715                                  | 0.690                                                                      | 0.780                                                                                                 | 0.549<br>0.6141                                                      |
|                 | TTM<br>RI<br>LSA | TTM    0.060      RI    0.180      LSA    0.205 | TTM    0.060    0.145      RI    0.180    0.370      LSA    0.205    0.415 | TTM    0.060    0.145    0.215      RI    0.180    0.370    0.425      LSA    0.205    0.415    0.490 | TTM0.0600.1450.2150.345RI0.1800.3700.4250.535LSA0.2050.4150.4900.600 |

Significance wrt. the baseline (†)

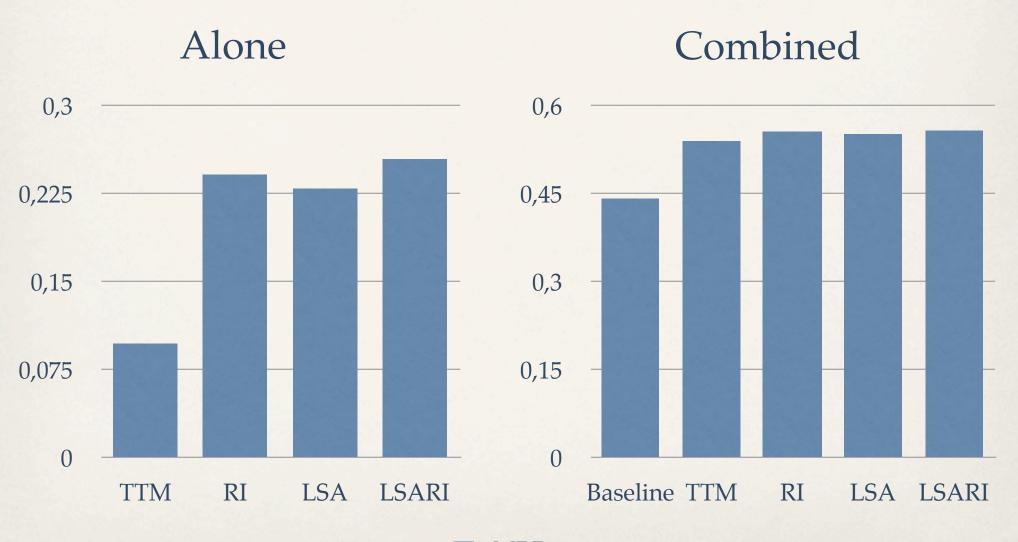
Significance wrt. the TTM (<sup>‡</sup>)

## Results (Italian) a@n



• TTM • RI • LSA • LSARI • Baseline

## Results (Italian) MRR



MRR

# Results (Italian)

| a@5                        | a@10                  | a@30                               | MRR                                                            |
|----------------------------|-----------------------|------------------------------------|----------------------------------------------------------------|
| 0.140                      | 0.175                 | 0.280                              | 0.097                                                          |
| 5 0.305                    | 0.385                 | 0.465                              | 0.241‡                                                         |
| 5 0.315                    | 0.390                 | 0.480                              | 0.229‡                                                         |
|                            |                       | -                                  |                                                                |
| 0.335                      | 0.400                 | 0.500                              | 0.254 <sup>±</sup>                                             |
| 0.335        5      0.530  | <b>0.400</b><br>0.630 | <b>0.500</b><br>0.715              | <b>0.254</b> <sup>‡</sup><br>0.441                             |
|                            |                       |                                    |                                                                |
| 5 0.530                    | 0.630                 | 0.715                              | 0.441                                                          |
| 5    0.530      5    0.565 | 0.630                 | 0.715                              | 0.441                                                          |
|                            | 0  0.140    5  0.305  | 0  0.140  0.175    5  0.305  0.385 | 0    0.140    0.175    0.280      5    0.305    0.385    0.465 |

Significance wrt. the baseline (†)

Significance wrt. the TTM (<sup>‡</sup>)

#### What we found out

- \* Alone: all the proposed DSMs **perform better** than the TTM, in particular LSA and LSARI
- \* Combined: all the combinations overcome the baseline
- \* English +16% (RI/LSA) Italian +26% (LSARI)
- \* No remarkable difference in performance between LSA and LSARI
- \* Gives some evidence that **DSMs** can be **useful** for **answer reranking**

# Learning to Rank experiment

- \* Similarity scorers' output as **features**
- RankNet 100 epochs, 1 hidden layer, 10 hidden nodes, 0.005 learning rate
- \* 10 fold Cross Validation
- \* MRR 0.68 for English and 0.605 for Italian obtained with the LSARI DSM, ~10% improvement

## **Future Work**

- Add more IR-based, linguistic and Machine Translation based features
- \* More **composition operators** for DSMs
- \* Add other semantic features (LDA, NNMF, ESA, ...)
- \* More **extensive experiment** with parameter tuning, different MLR algorithms and different dataset

## Thank you for your attention