
Playing with Knowledge:
A Virtual Player for “Who Wants to Be a Millionaire?”

that Leverages Question Answering Techniques

Piero Molinoa, Pasquale Lopsa, Giovanni Semeraroa, Marco de Gemmisa,
Pierpaolo Basilea

aDepartment of Computer Science, University of Bari Aldo Moro
Via E. Orabona 4, I-70125 Bari, Italy

Abstract

This paper describes the techniques used to build a virtual player for the
popular TV game “Who Wants to Be a Millionaire?”. The player must
answer a series of multiple-choice questions posed in natural language by
selecting the correct answer among four different choices. The architecture
of the virtual player consists of 1) a Question Answering (QA) module, which
leverages Wikipedia and DBpedia datasources to retrieve the most relevant
passages of text useful to identify the correct answer to a question, 2) an
Answer Scoring (AS) module, which assigns a score to each candidate answer
according to different criteria based on the passages of text retrieved by the
Question Answering module, and 3) a Decision Making (DM) module, which
chooses the strategy for playing the game according to specific rules as well
as to the scores assigned to the candidate answers.

We have evaluated both the accuracy of the virtual player to correctly
answer to questions of the game, and its ability to play real games in order
to earn money. The experiments have been carried out on questions coming
from the official Italian and English boardgames. The average accuracy of
the virtual player for Italian is 79.64%, which is significantly better than
the performance of human players, which is equal to 51.33%. The average
accuracy of the virtual player for English is 76.41%. The comparison with

Email addresses: piero.molino@uniba.it (Piero Molino),
pasquale.lops@uniba.it (Pasquale Lops), giovanni.semeraro@uniba.it (Giovanni
Semeraro), marco.degemmis@uniba.it (Marco de Gemmis),
pierpaolo.basile@uniba.it (Pierpaolo Basile)

Preprint submitted to Elsevier November 14, 2014

human players is not carried out for English since, playing successfully the
game heavily depends on the players’ knowledge about popular culture, and
in this experiment we have only involved a sample of Italian players. As
regards the ability to play real games, which involves the definition of a
proper strategy for the usage of lifelines in order to decide whether to answer
to a question even in a condition of uncertainty or to retire from the game by
taking the earned money, the virtual player earns e 114,531 on average for
Italian, and e 88,878 for English, which exceeds the average amount earned
by the human players to a greater extent (e 5,926 for Italian).

Keywords: Language Game, Question Answering, Natural Language
Processing, Artificial Intelligence, Decision Making

1. Introduction

The work on intelligent computer games has a long history and has been
one of the most successful and visible results of Artificial Intelligence research
[33]. Indeed, today artificial systems are able to compete and sometimes
challenge human players in several complex games. Most of these games
are closed world ones, meaning that they have a finite number of possible
choices, which allows the researchers to solve them in a formal way, even
though they are hard to play due to the exponential dimensions of the search
spaces. A more challenging type of games is represented by open world
games, such as sport games or crosswords: they are less structured and,
moreover, both the states of the game and the actions of the player cannot be
easily enumerated, making the search through the space of possible solutions
practically unfeasible. One of the most recent results in this field is the
success of Watson, the open-domain question answering system built by IBM
Research, which in February 2011 beat the two highest ranked players of the
quiz show Jeopardy! [16, 17].

We are particularly interested to games related to human language. They
are classified in word games, in which word meanings are not important, and
language games, in which word meanings play an important role [26]. Lan-
guage games generally require a wide linguistic and common sense knowledge.
“Who Wants to Be a Millionaire?” (WWBM) is a perfect example of a lan-
guage game in which the player provides an answer to a question posed in
natural language by selecting the correct answer out of four possible ones.
Even though the number of possible answers is limited to four, being able to

2

successfully play this game heavily depends on the player’s knowledge, her
understanding of the questions and her ability to balance the confidence in
the answer against the risk taken in answering.

This article describes the architecture of a Virtual Player for the WWBM
game, which leverages Question Answering (QA) techniques and both Wikipedia
and DBpedia open knowledge sources in order to incorporate the knowledge
useful for playing the game. A preliminary work that describes the archi-
tecture of the virtual player is presented in [36]. The current work extends
the previous work along the following directions: the use of DBpedia; the
decision making strategy integrated to manage the “lifelines” characterizing
the game; the possibility to retire from the game; the use of machine learn-
ing techniques to improve the process of scoring the candidate answers to
a question. Extended related work about question answering, answer val-
idation and language games are also provided, along with more extensive
experiments on both the Italian and the English versions of the game.

Motivated by the challenge to develop an effective virtual player for the
WWBM game, in this paper we address the following research questions:

• RQ1. Is it possible to define a language-independent framework for QA
and answer validation?
We cope with this question by assessing the effectiveness of a QA
and Answer Scoring (AS) framework for English and Italian. The QA
framework leverages Wikipedia and DBpedia open knowledge sources,
while the AS module supplies several criteria to score candidate answers
and to effectively combine scores through machine learning techniques.

• RQ2. Is it possible to develop a virtual player for the WWBM game
able to outperform human players?
We address this question by comparing the accuracy of the human
players against that of a virtual player built using the QA and AS
framework in RQ1. We evaluate the ability of the virtual player to play
the WWBM game with all its rules, i.e. usage of “lifelines”, answering
in a condition of uncertainty, retiring from the game by taking the
earned money.

The paper is organized as follows: Section 2 describes the rules of the
game, while related work in the areas of language games, QA and AS are
presented in Section 3. The architecture of the virtual player, the details of

3

Figure 1: An example of “Who Wants to Be a Millionaire?” question.

the QA and AS modules, and the decision making strategy adopted to play
the game are provided in Sections 4-7. Section 8 reports the results of an
extensive evaluation performed on Italian and English versions of the game,
before drawing the final conclusions.

2. Rules of the Game

WWBM is a language game, broadcast by many TV channels in several
countries, in which a player must correctly answer a series of 15 multiple-
choice questions of increasing difficulty. Questions are posed in natural lan-
guage and the correct answer is selected among four possible choices.

Figure 1 shows an example of the question Who directed Blade Runner?,
and the four possible answers A) Harrison Ford B) Ridley Scott C) Philip
Dick D) James Cameron. There are no time limits to answer the questions.
Moreover, contestants read the question in advance, and then at any time
they can decide whether to attempt an answer or quit the game by keeping
the earned money. Each question has a certain monetary value (level 1:e
500; level 2:e 1,000; level 3:e 1,500; level 4:e 2,000; level 5:e 3,000; level
6:e 5,000; level 7:e 7,000; level 8:e 10,000; level 9:e 15,000; level 10:e
20,000; level 11:e 30,000; level 12:e 70,000; level 13:e 150,000; level 14:e
300,000; level 15:e 1,000,000). If the answer is correct, the player earns a
certain amount of money and continues to play by answering questions of
increasing difficulty until either she reaches the last question or she retires
from the game by taking the earned money. There are three guarantee points
where the money is banked and cannot be lost even if the player gives an
incorrect answer to one of the next questions: 3,000, 20,000 and 1,000,000
Euros, corresponding to the milestone questions 5, 10, 15, respectively. At

4

any point, the contestant may use one or more of three “lifelines”, which
provide her with some form of assistance:

• 50:50 : this lifeline removes two wrong answers, leaving the player with
a binary choice between the correct answer and the incorrect one;

• Poll the Audience: the player asks the studio audience to pronounce
about the correct answer. The percentages of the audience for the 4
different answers are given to the player, who has the last word on the
choice of the answer;

• Phone a Friend: the player has 60 seconds to phone a friend, and read
the question with the four possible choices, in order to get a suggestion
about the right choice.

The amount of earned money and the lifelines vary from country to country.

3. Related Work

3.1. Natural Language Processing and Language Games
Language games usually require a big amount of knowledge and deep

reasoning capabilities to compete at human level. Artificial players for lan-
guage games adopt Natural Language Processing (NLP) technologies in order
to manage the complexity and ambiguity of the language, while storing and
manipulating complex representations of the knowledge involved in the game.

A popular language game is solving crossword puzzles. Besides the lin-
guistic knowledge, solving crosswords requires the satisfaction of constraints
over the possible answers. The first experience reported in literature is
Proverb [27], that exploits large libraries of clues and solutions to past cross-
word puzzles, while WebCrow [14], the first solver for Italian crosswords,
exploits the Web as the main source of information, and a set of previously
solved games, as well. WebCrow is based on the sequential combination
of “clue answering” and “grid filling”, a solution which is radically differ-
ent from a human approach. In order to find the best candidate words,
WebCrow queries Google search engine with queries that are reformulations
of the original definitions obtained by enriching the morphological forms of
the keywords (e.g., by varying number and gender for nouns, or the tense
for verbs), by adding synonyms and hypernyms from WordNet, in order to
make the querying process more effective. The text in the retrieved pages

5

is analyzed by NLP techniques, and a classifier chooses the most probable
part-of-speech depending on the definition in order to reduce the number of
candidate words. Finally, a list of the best words for the definition is given
and they are matched against the letter constraints given by the grid. We-
bCrow achieves 68.8% of correct words and 79.9% of correct letters, showing
the potential of the Web as a resource for complex language games.

Another interesting language game is the Guillotine, a game broadcast by
the Italian National TV company. It involves a single player, who is given a
set of five words (clues), each linked in some way to a specific word that rep-
resents the unique solution of the game. Words are unrelated to each other,
but each of them is strongly related to the word representing the solution.
For example, given the five words sin, Newton, doctor, pie, New York, the
solution is apple because: the apple is the symbol of original sin in Christian
theology; Newton discovered the gravity by means of an apple; “an apple
a day keeps the doctor away” is a famous proverb; the apple pie is a fruit
pie, and New York city is also called “the big apple”. In [47, 3], the authors
present OTTHO (On the Tip of my THOught), an artificial player for the
Guillotine game. The idea behind OTTHO is to define a knowledge infusion
process which analyzes unstructured information stored in open knowledge
sources on the Web to create a memory of linguistic competencies and world
facts that can be effectively exploited by the system for a deeper understand-
ing of the information it deals with. The knowledge infusion process adopts
NLP techniques to build a knowledge base and, similarly to the approach
described in this article, extracts information mainly from Wikipedia. A
reasoning mechanism based on a spreading activation algorithm is adopted
to retrieve the most appropriate pieces of knowledge useful to find possible
solutions.

An approach to implement a virtual player for the “Who Wants to Be a
Millionaire?” game has already been proposed [24]. The authors exploit the
huge amount of knowledge in the Web and use NLP techniques to reformu-
late the questions in order to create different queries. The queries are then
sent to Google search engine and the number of results is used as a ranking
mechanism which exploits the redundancy of the information sources [24].
A decision making module, that combines results in the spirit of ensemble
learning using an adaptive weighting scheme, tries to maximize the earned
amount of money with respect to the risk of answering. The system reaches
an accuracy of 75%, showing how unstructured data can be useful for this
kind of task, but it fails when questions require common sense reasoning and

6

access to structured information. The main differences with respect to our
work are that we adopt selected sources of information available on the Web,
such as Wikipedia and DBpedia, rather than the whole Web, in an attempt
to improve reliability of the answers; moreover, we adopt a QA framework
instead of a search engine in order to improve the process of selecting the
most reliable passages.

In February 2011 the IBM Watson supercomputer, adopting technology
from the DeepQA project [17], has beaten two champions of the Jeopardy!
TV quiz. In Jeopardy! the player is given a question but expressed as answer,
and has to find the answer which must be expressed as a question. Watson
applies several different NLP, Information Retrieval (IR) and Machine Learn-
ing (ML) techniques focusing on open-domain QA, by answering questions
without domain constraints. Watson analyzed 200 millions content elements,
both structured and unstructured, including the full text of Wikipedia. The
steps of the Watson answering process can be summarized as follows: 1) it
acquires knowledge from different data sources, namely encyclopedias, dic-
tionaries, thesauri, journal articles, databases, taxonomies and ontologies; 2)
the input of the problem is treated as a question, then it is analyzed using
NLP algorithms and lastly it is classified; 3) candidate answers are generated
from the previously acquired knowledge; 4) candidate answers that do not
pass a threshold are filtered out. Several scoring algorithms are used to rank
the candidate answers in order to give evidence of their quality. Lastly, the
scoring criteria are combined to select the final candidate answer. Similarly
to the approach implemented in Watson, we adopt QA techniques for solving
the WWBM game, and we use the same process of using different scoring
criteria, which are eventually combined to return the best candidate answer.

3.2. Question Answering
The task of Question Answering is to find correct answers to users’ ques-

tions expressed in natural language. The traditional QA pipeline relies on
the following steps: Question Analysis, Passage Retrieval, Answer Extrac-
tion, Answer Selection/Validation. Closed-domain QA refers to QA tasks
pertaining specific and limited domains (such as medicine). Dealing with
questions in a closed-domain is generally an easier task since some kind of
domain-specific knowledge can be exploited, and only a limited type of ques-
tions are accepted. Open-domain QA does not refer to a specific domain and
deals with more general questions. This usually requires the use of world
knowledge from which the answer is extracted. The Web is generally used

7

as source of knowledge in order to exploit the redundancy of information, by
selecting the answers according to their frequency among the search results
[13, 25]. This technique is often complemented by textual pattern extraction
and matching in order to find the exact answers and rank them by confi-
dence [22, 38]. NLP methods are used for understanding users’ questions
and matching passages extracted from the documents [21, 23]. As reported
in [9], the adoption of NLP plays a key role, since there are likely too few
answers to users’ questions, and the way in which they are expressed may
significantly differ from the question. Thus, NLP is essential for discovering
complex lexical, syntactic and semantic relationships between questions and
candidate answers. The most commonly adopted linguistic analysis steps
include stopword removal, stemming, lemmatization, part-of-speech tagging,
parsing, named entity recognition, word sense disambiguation and seman-
tic role labeling. Other approaches rely on a different kind of knowledge to
extract the answers to questions. In [15], an approach to open-domain QA
over massive knowledge bases (KBs) is carried out by decomposing the full
open QA problem into smaller sub-problems including question paraphras-
ing and query reformulation. In the first step, the question is rewritten using
a paraphrase operator, mined from a large corpus of questions, in order to
reduce the variance of the input questions: for example “How can you tell
if you have the flu?” is reformulated as “What are signs of the flu?”. The
second step uses hand-written templates to parse the paraphrased question
to a specific KB query, which is then reformulated through a query-rewrite
operator to cope with the vocabulary mismatch between question words and
KB symbols.

In our work we adopt Wikipedia and DBpedia knowledge sources to ex-
tract answers to questions, and we integrate common linguistic analysis steps.
The novelty is the adoption of Distributional Semantic Models (DSM) [46] for
computing the semantic similarity between questions and documents. This
is novel in the QA field, especially for the task of answer re-ranking.

3.3. Question Answering for Machine Reading and Answer Validation
QA systems generally deal with simple questions that require almost no

inference to find the correct answers, since no real understanding of doc-
uments is performed. This historically led to QA architectures based on
Information Retrieval techniques, in which the final answers are obtained
after focusing on selected portions of retrieved documents and matching sen-
tence fragments or sentence parse trees. Other systems perform a deeper

8

analysis of texts, to solve tasks that involve some kind of reasoning. For
example, in the Machine Reading task [39], the goal is to answer questions
that require a deep knowledge of individual short texts and in which sys-
tems are required to choose one answer, by analyzing the corresponding test
document in conjunction with background text collections. Other complex
tasks include Recognizing Textual Entailment (RTE) [11]1 and the Answer
Validation Exercise (AVE) [44]2. In RTE, a system must decide whether
the meaning of a text T entails the meaning of a different text H, i.e. the
hypothesis. Differently, AVE consists in deciding whether an answer to a
question is correct or not according to a given text. Systems receive a set of
triplets (question, answer and supporting text) and must return a value for
each triplet, which can be: validated, i.e. the answer is correct and sup-
ported, although not selected, selected, i.e. the answer is validated and
chosen as the output, and rejected, i.e. the answer is incorrect or there
is no enough evidence of its correctness. In order to solve these tasks, sev-
eral techniques were adopted, mostly based on the use of lexical processing,
syntactic processing, and Named Entities [43].

In [5] the answer validation is carried out by computing the overlap be-
tween the system response to a question and the stemmed content words of
a human-generated answer key. The intuition behind this strategy is that a
good answer is expected to contain certain keywords, but the exact phrasing
does not matter. This is the reason why the authors used stopwords removal
and stemming. In [31], the answer validation is based on the intuition that
the knowledge which connects an answer to a question can be estimated by
exploiting the redundancy of the Web information. More specifically, the
hypothesis is that the number of documents retrieved from the Web in which
the question and the answer co-occur is a good indicator of the validity of
the answer.

More complex strategies propose solutions to answer validation based on
a lightweight process of abduction starting from paragraphs of text where the
answers can be found [20], or based on the use of semantics. For example,
Castillo [8] builds a model using Support Vector Machines to define whether
the implication holds, using a set of lexical and semantic measures to com-
pute the similarity between (hypothesis, text) pairs. Features are based on:

1http://pascallin.ecs.soton.ac.uk/Challenges/RTE/
2http://nlp.uned.es/clef-qa/ave/

9

1) the overlap between text and hypothesis (computed by taking into account
single words or stems, bigrams and trigrams); 2) the cosine similarity and
the Levenshtein distance between the text and hypothesis; 3) the semantic
similarity using Wordnet. Glöckner [19] also used shallow feature extraction
(like lexical overlap) to validate answers. A local score is then computed, and
aggregation is used to determine a combined score for each answer which cap-
tures the joint evidence of all snippets supporting the answer. Ahn et al. [2]
exploited semantic representations and inference techniques in the process of
answer extraction from selected passages. Answer candidates are extracted
using a “relaxed” unification method that takes advantage of Prolog unifica-
tion, which allows to assign high scores to perfect matches between terms of
the question and passage, and low scores for less perfect matches obtained by
relaxed unification. Less perfect matches are granted for different semantic
types, predicates with different argument order, or terms with symbols that
are semantically related (hypernymy) according to WordNet.

We were inspired by those previous approaches to build the virtual player
for the WWBM game, and we borrowed most of the techniques adopted in the
AVE task, such as techniques based on lexical processing and computation
of an approximate match between passages of text and candidate answers
(Section 6).

3.4. Question Answering over Linked Data
The rapid growth of semantic information published on the Web, in par-

ticular through the linked data initiative [4], poses new challenges when sup-
porting users to query these large amounts of heterogeneous and structured
semantic data using natural language interfaces. This led to the rise of
ontology-based QA, a new paradigm able to exploit the expressive power of
ontologies and to go beyond the representation of user information needs as
keyword-based queries.

FREyA [12] allows users to enter queries in any form. In a first step, it
generates a syntactic parse tree in order to identify the answer type. The
processing then starts with a lookup, annotating query terms with ontology
concepts using the ontology-based gazetteer OntoRoot. Next, on the basis
of the ontological mappings, triples are produced and finally combined to
generate a SPARQL query. In a similar way, PowerAqua [29] transforms
the query into a set of triples 〈subject, property, object〉 by means of
linguistic processing, and maps the triples to suitable semantic resources in
various ontologies that are likely to describe the query terms. Given these

10

semantic resources, a set of ontology triples that jointly cover the query is
derived and combined into a complete answer, by merging and ranking the
various interpretations produced in different ontologies.

QAKiS [7] is a QA system over DBpedia that focuses on bridging the
gap between natural language expressions and labels of ontology concepts by
means of the WikiFramework repository. This repository has been built by
automatically extracting relational patterns from Wikipedia free text that
specify possible lexicalizations of properties in DBpedia. For example, one of
the natural language patterns that express the relation birthDate is was
born on. The approach of using a pattern repository represents a promising
solution for bridging the lexical gap between natural language expressions
and ontology labels, which we also used in our work (Section 5.1). Similarly
to QAKiS, SemSek [1] also focuses on matching natural language expressions
to ontology concepts. This relies on three steps: linguistic analysis, query
annotation, and semantic similarity. The query annotation mainly looks
for the entities and classes in a DBpedia index that match the expressions
occurring in the natural language question. This process is guided by the
syntactic parse tree provided by the linguistic analysis. Starting from the
most plausible identified resources and classes, SemSek retrieves an ordered
list of terms following the dependency tree. In order to match these terms to
DBpedia concepts, SemSek uses two semantic similarity measures, one based
on Explicit Semantic Analysis [18], and one based on WordNet.

In [30], the evaluation of these systems in the context of the challenges for
question answering systems over linked data (QALD) is presented. Results
are encouraging and show that QA over linked data can deliver answers to
quite complex information needs expressed in natural language using hetero-
geneous semantic data, even though the task of mapping natural language
to formal queries is not trivial and still has several problems [10].

4. Virtual Player Architecture

The architecture of the virtual player for the WWBM game is presented
in Figure 2 and consists of four modules:

• Game Manager: it manages the user interface, selects a question for
each level of the game, and logs the information about each game for
the different players;

11

GAME
MANAGER

QUESTION
ANSWERING

ANSWER
SCORING

DECISION
MAKING

Answer / Retire

Wikipedia DBpedia

Question and
candidate answers

Ranked list of
retrieved

passages / triples

Score for each
candidate answer

Level of the game
and lifelines

Figure 2: Virtual Player architecture.

• Question Answering: it leverages Wikipedia and DBpedia to re-
trieve and rank the most relevant passages of text useful to identify the
correct answer to a question. More details are provided in Section 5;

• Answer Scoring: it leverages the list of text passages extracted
from the Question Answering module and adopts several criteria
to assign a score to each of the four possible answers to a question. A
detailed description is provided in Section 6;

• Decision Making: it takes the final decision whether answering to
a question or retiring from the game by considering the current level
of the game, the available lifelines, and the score computed for each
possible answer by the Answer Scoring. A detailed description is
provided in Section 7.

According to the current level of difficulty of the game, the Game Man-
ager selects a question along with the four possible answers, which are then
passed to the Question Answering module. This module exploits the
knowledge contained in Wikipedia and DBpedia to select a ranked list of
passages of text that likely contain the correct answer to the question. These
passages are processed by the Answer Scoring, which implements a set of

12

heuristics to come up with a score for each possible answer to the question.
Finally, the Decision Making module decides to provide a specific answer
or to retire from the game, by taking into account the scores of the candidate
answers, the available lifelines and the current level of the game.

In order to better explain the whole process of answer selection, we will
use the following running example throughout the paper. Let us consider the
question in Figure 1: Who directed Blade Runner?, whose correct answer is
B) Ridley Scott. Let us also consider the ranked list of text passages provided
by the Question Answering module in Table 1.

Each passage contains the title of the Wikipedia page from which it was
extracted, and the score computed by the Question Answering mod-
ule. More formally, given 〈q, (A,B,C,D)〉, where q is the question and
(A,B,C,D) are the four possible answers, the Question Answering mod-
ule returns a list of results Rq = {〈t1, p1, w1〉, . . . , 〈t|Rq |, p|Rq |, w|Rq |〉} where the
triple 〈ti, pi, wi〉 corresponds to the title ti of the Wikipedia page containing
the passage pi, and wi is the score indicating the relevance of that passage
with respect to the question q. The list Rq is empty if the Question An-
swering module is not able to find passages relevant to the question. This
may happen when:

• the information is not contained in any of the adopted knowledge
sources, i.e. Wikipedia or DBpedia;

• the information is contained in one of the adopted knowledge sources,
but it is not possible to find a match (textual or semantic) between the
question and the passages containing the answer. For example, even
though the answer to the question When was Leonardo da Vinci born?
is contained in Wikipedia, it is difficult to find it, since it is reported
as “Leonardo da Vinci (April 15, 1452 - May 2, 1519)”. We solve
this problem by implementing a strategy based on the use of DBpedia
(Section 5.1);

• the question falls into one of the categories which remain unanswerable
by our system (Section 8.1.1).

5. Question Answering

In order to provide the virtual player with the knowledge useful for finding
the correct answers to the questions of the game, we exploited data coming

13

Wikipedia Passage QA
page (ti) (pi) score (wi)

Ridley Scott Sir Ridley Scott (born 30 November 1937) is
an English film director and producer. Fol-
lowing his commercial breakthrough with Alien
(1979), his best-known works are the sci-fi clas-
sic Blade Runner (1982) and the best picture
Oscar-winner Gladiator (2000).

5.32

Blade Runner Blade Runner is a 1982 American dystopian sci-
ence fiction action film directed by Ridley Scott
and starring Harrison Ford, Rutger Hauer, and
Sean Young. The screenplay, written by Hamp-
ton Fancher and David Peoples, is loosely based
on the novel Do Androids Dream of Electric
Sheep? by Philip K. Dick.

5.1

Blade Runner Director Ridley Scott and the film’s producers
“spent months” meeting and discussing the role
with Dustin Hoffman, who eventually departed
over differences in vision. Harrison Ford was
ultimately chosen for several reasons.

5

Blade Runner The screenplay by Hampton Fancher was op-
tioned in 1977. Producer Michael Deeley be-
came interested in Fancher’s draft and con-
vinced director Ridley Scott to film it.

4.9

Blade Runner Interest in adapting Philip K. Dick’s novel Do
Androids Dream of Electric Sheep? developed
shortly after its 1968 publication. Director Mar-
tin Scorsese was interested in filming the novel,
but never optioned it.

1.2

Table 1: List of passages returned by the Question Answering module for the question
“Who directed Blade Runner?”. Each passage reports the Wikipedia page it is extracted
from and the relevance score of that passage with respect to the question.

from two open knowledge sources: Wikipedia and DBpedia. Their knowledge
is processed by a multilingual QA framework, called QuestionCube [34, 35],
able to retrieve the most relevant passages of text which likely contain the
correct answer to the questions of the game.

14

Document
Index

DocumentoDocumentoDocumentoDocumento
Document

Document
Document

Indexer

Document
Base

Indexing

Search

User Question
Question
Analysis Search Engines

Risposta
Risposta

Risposta
Answer

Filters

Passage Index

Passage
Base

Figure 3: QuestionCube architecture.

Figure 3 depicts a high level architecture of the QA framework. It works in
two separate steps: at indexing time the system builds two different indexes
for documents and passages belonging to each document, while at query time
the question is analyzed by an NLP pipeline, tagged with linguistic annota-
tions, and passed to a set of search engines. Finally, the passages belonging
to the documents retrieved by the search engines are scored, filtered and re-
turned as a ranked list. More details follow:

Question Analysis: a pipeline of NLP analyzers is adopted to tag ques-
tions with linguistic annotations. We adopt the following pipeline: stemming,
part-of-speech tagging, lemmatization, and Named Entity Recognition (NER).
This representation is the input to the search engines and also to each filter,
both of which need this information to carry out the analysis at the same
linguistic level of the question. At the moment, NLP analyzers for English

15

and Italian have been developed.

Search Engines: the use of multiple engines allows the integration of several
retrieval strategies and data sources. Each search engine has its own query
generation component, since it may exploit different tags added to the query
and may adopt a different query syntax. When a new question comes, each
engine is activated and the lists of retrieved documents are merged into a
single list, by maintaining the reference to the provenance of each document
and the corresponding score computed by each engine. Starting from the
retrieved documents, the passage index is used to obtain the list of passages,
which are the input to the Filters. We adopt three different search engines:

• two engines based on the BM25 model [41], running on keywords and
lemmas extracted from Wikipedia pages, respectively;

• one engine searching the DBpedia triples, as described in Section 5.1.

Filters: a pipeline of filters is adopted to assign a score to each text passage
belonging to documents retrieved in the previous step:

• Zero Filter : it removes passages having a score equal to 0;

• Top-N Filter : it selects the N top-ranked passages, i.e. those with the
highest score;

• Terms filter : it assigns a score to a passage based on the frequency of
occurrence of question terms in the passage;

• Exact Sequence Filter : it assigns a score to a passage based on the
number of terms that occur in the longest overlapping sequence between
question and passage;

• Normalization Filter : it assigns a normalized score to a passage based
on the passage length. Both a simple normalization filter considering
only the number of terms (called Byte-size Normalization) and a fil-
ter based on the Pivoted Normalized Document Length technique are
implemented. More details in [32, 49];

• N-grams Filter : it assigns a score to a passage based on the overlapping
of n-grams between the question and the passage;

16

• Density Filter : it assigns a score to a passage based on the distance of
the question terms inside that passage. The closer the question terms
in the passage, the higher the score. The density is calculated using a
modified version of the Minimal Span Weighting schema [37]:(

| q ∩ d |
1 + max(mms)−min(mms)

)

where q and d are the set of terms in the query and in the document,
respectively (specifically, the query is the question and the document
is the passage); max(mms) and min(mms) are the initial and final
location of the sequence of document terms containing all the query
terms;

• Distributional Filter : it assigns a score to a passage based on its sim-
ilarity with the question, computed using a Distributional Semantic
Model (DSM). DSM is built applying Latent Semantic Analysis to
the term-term matrix of the Wikipedia pages. We construct a matrix
containing the 100,000 most frequent terms in Wikipedia. In DSMs,
given the vector representation of two words u = (u1, u2, ..., un)> and
v = (v1, v2, ..., vn)>, it is always possible to compute their similarity
as the cosine of the angle between them. However, the question and
the passages are sentences composed by several terms, so in order to
compute their similarity we need a method to compose words occur-
ring in these sentences. It is possible to combine words through vector
addition (+). This operator is similar to the superposition defined in
connectionist systems [50], and corresponds to the point-wise sum of
components. Addition is a commutative operator, which means that it
does not take into account any order or underlying structures existing
between words. More complex methods to combine word vectors might
be exploited. Formally, if q = q1q2...qn and p = p1p2...pm are the ques-
tion and the passage respectively, we build two vectors q and p which
represent the question and the passage in a semantic space respectively.
Vector representations are built applying the addition operator to the
vector representation of words belonging to them:

q = q1 + q2 + . . .+ qn

p = p1 + p2 . . .+ pm

(1)

17

The similarity between q and p is computed as the cosine similarity
between them. This similarity is the score assigned to the passage;

• Z-Score Filter : it assigns a score to a passage based on the Z-Score
normalization [48] of scores assigned by the the search engines and the
other filters;

• CombSum Filter : it assigns a score to a passage by summing the scores
assigned by the search engines and the other filters [48].

Terms filter and Density filter have an enhanced version which adopts
the combination of lemmas and part-of-speech tags as features, instead of
terms. A boost factor can be assigned to each filter in order to increase (or
decrease) its strength.

5.1. Using DBpedia as knowledge source
The question When was Leonardo da Vinci born? shows the difficulty

to extract the correct answer, even though the information is contained in
Wikipedia. In this case, the date of birth is “April 15, 1452”, but it cannot
be identified by adopting the classical passage retrieval process implemented
by the Question Answering module. In order to manage this kind of
questions, we used a specific search engine which leverages the knowledge
contained in DBpedia. DBpedia includes structured information embedded
in the Wikipedia articles – the “infobox”. Figure 4 reports the infobox for
Leonardo da Vinci, which contains many useful information, such as birth
date, death date, nationality, etc. DBpedia represents resources, properties
as well as relations between resources using RDF triples, which contain three
components: subject, predicate, and object. For example, the RDF triple
that represents the birth date of Leonardo da Vinci is:
〈http://dbpedia.org/resource/Leonardo da Vinci,

dbpedia-owl:birthDate,
1452-04-15.〉

DBpedia allows to query relations and properties associated with Wikipedia
resources, thus the birth date of Leonardo da Vinci can be found by accessing
the property dbpedia-owl:birthDate. In order to leverage the knowledge
contained in DBpedia, we have manually created a mapping between the
50 most frequent DBpedia properties and different lexicalizations, in ques-
tion form, asking for those specific properties. For example, the property
dbpedia-owl:birthDate is mapped to the questions When was he born?, or

18

Figure 4: Leonardo da Vinci infobox.

What is the date of birth?, and other similar wordings. In this way we have
obtained two datasets containing 347 questions for Italian and 312 for En-
glish, where each question is tagged with the corresponding DBpedia prop-
erty. Each dataset is used to train a Rocchio classifier [42] that, given a
question, is able to predict the DBpedia property it is mapped to. The
features used to train each classifier are all the words occurring in the ques-
tions. Stopwords are not removed, since words such as When, How, Where
are useful hints to guide the classifier to the correct classification.

In order to retrieve relevant information from DBpedia we queried an
additional search engine containing documents which are the lexicalization
of RDF triples with the same subject in the form: 〈label of the subject, label
of the predicate, label of the object〉 (value of the object, in case of literals).
The lexicalization for the previous example is: 〈Leonardo da Vinci, date of
birth, 1452- 04-15〉. Only triples related to the 50 selected properties are
lexicalized in that way. Each document has an additional field reporting the
DBpedia properties it contains, such as dbpedia-owl:birthDate. When

19

a query (question) is sent to the DBpedia search engine, it is first classified
using the Rocchio classifier in order to identify the property it refers to; then,
the selected property is added to the query, along with the named entities (if
any) occurring in the question. The query is submitted to the search engine,
which retrieves the set of documents relevant to the query. Starting from the
documents, the system extracts the corresponding list of passages (the RDF
triples), which are scored using the pipeline of filters described in Section
5, and an additional DBpedia property filter. This filter scores the triples
containing the property returned by the classifier with its confidence, and
the triples not containing it with 0. It is worth to note that each question is
always submitted to both search engines working on Wikipedia and DBpedia,
in order to retrieve results from both knowledge sources.

6. Answer scoring

The main goal of the Answer Scoring module is to assign a score to
each of the four possible answers to a question. Similarly to the approaches
used in the context of the Answer Validation Exercise [44], we adopted five
criteria based on the analysis of the passages returned by the Question
Answering module. Each criterion returns a score for each possible an-
swer, which is normalized using the sum of the scores of the four possi-
ble answers. More formally, given 〈q, (A,B,C,D)〉, each criterion computes
〈q, (cA, cB, cC , cD)〉, where cX is the score assigned to the candidate answer
X. In the following, each criterion is described by taking into account our
running example.

Title Levenshtein (TL) criterion. It computes the Levenshtein distance
between a candidate answer X and the title ti of the Wikipedia page returned
by the Question Answering module. The Levenshtein distance measures
the difference between two strings, and is defined as the minimum number
of single-character edits (i.e. insertion, deletion, substitution) required to
change one string into the other. As the Levenshtein distance is a distance
measure, rather than a similarity measure, we compute:

max(len(X), len(ti))− lev(X, ti)
max(len(X), len(ti))

where len(·) is the function computing the length of the string, and lev(X, ti)
is the Levenshtein distance between X and ti, used as a normalization fac-

20

tor (to have scores in the [0, 1] interval). In our running example, taking
into account just the first passage returned by the Question Answering
module (Table 1), the answer B) Ridley Scott occurs in the title of the page
containing the passage, so it gets the maximum score of 1, while the answer
A) Harrison Ford gets a score equal to 13−12

13 = 0.077, the answer C) Philip
Dick gets a score equal to 12−10

12 = 0.167, and the answer D) James Cameron
gets a score equal to 13−12

13 = 0.077. The normalized score of each answer is:
cA = 0.077

0.077+1+0.167+0.077 = 0.058
cB = 1

0.077+1+0.167+0.077 = 0.757
cC = 0.167

0.077+1+0.167+0.077 = 0.126
cD = 0.077

0.077+1+0.167+0.077 = 0.058.

Longest Common Subsequence (LCS) criterion. It computes the Longest
Common Subsequence between a candidate answer X and a passage of text
pi returned by the Question Answering module, or just the title ti of the
Wikipedia page the passage pi is extracted from. In our running example,
taking into account only the second passage, the answer A) Harrison Ford
gets a score equal to 13, the answer B) Ridley Scott gets a score equal to 12,
the answer C) Philip Dick gets a score equal to 11, and the answer D) James
Cameron gets a score equal to 0 since it does not occur in the passage. The
normalized score of each answer is:
cA = 13

13+12+11+0 = 0.361
cB = 12

13+12+11+0 = 0.333
cC = 11

13+12+11+0 = 0.305
cD = 0

13+12+11+0 = 0.

Overlap criterion. It computes the Jaccard index between the set of terms in
a candidate answer X and the set of terms in a passage of text pi returned by
the Question Answering module. The Jaccard index measures the sim-
ilarity between sets, and is defined as the size of the intersection divided by
the size of the union of the sets. In our running example, taking into account
only the second passage, answers A), B) and C) get a score of 2

49 = 0.041,
while the answer D) gets a score equal to 0. The normalized score of each
answer is:
cA = cB = cC = 0.041

0.041+0.041+0.041+0 = 0.333
cD = 0

0.041+0.041+0.041+0 = 0.

21

Exact Substring (ES) criterion. It computes the length in characters of
the longest common substring between a candidate answer X and a passage
of text pi returned by the Question Answering module, normalized using
the length of the candidate answer. In our running example, taking into
account only the second passage returned by the Question Answering
module, the answer A) Harrison Ford gets a score of 13

13 = 1, the answer B)
Ridley Scott gets a score of 12

12 = 1, the answer C) Philip Dick gets a score of
6
11 = 0.55, and the answer D) James Cameron gets a score equal to 0. The
normalized score of each answer is:
cA = 1

1+1+0.55+0 = 0.392
cB = 1

1+1+0.55+0 = 0.392
cC = 0.55

1+1+0.55+0 = 0.215
cD = 0

1+1+0.55+0 = 0.

Density criterion. It computes the density of the terms in a candidate an-
swer X inside a passage of text pi returned by the Question Answering
module, using the minimal overlapping span method [37]. In our running
example, taking into account only the second passage returned by the Ques-
tion Answering module, the answers A) and B) get a score equal to 1,
the answer C) gets a score equal to 2

3 = 0.66 (as the passage reports the full
name Philip K. Dick, adding an extra token between the two tokens of the
candidate answer), and the answer D) gets 0. The normalized score of each
answer is:
cA = 1

1+1+0.66+0 = 0.376
cB = 1

1+1+0.66+0 = 0.376
cC = 0.66

1+1+0.66+0 = 0.248
cD = 0

1+1+0.66+0 = 0.

Each criterion has some parameters that can be set:
1. the number of processed passages: in this case the score of each answer

is computed for each of the top-n passages returned by the Question
Answering module, and the final score is the average of those values;

2. the use of the weight wi of the passages returned by the Question
Answering module: in this case the average computed at the previous
point is weighted using the score wi of each passage. This strategy
allows to assign higher weights to passages deemed as more relevant to
the question by the Question Answering module;

22

3. the level of linguistic analysis to adopt for processing the passages re-
turned by the Question Answering module. Passages are repre-
sented by using keywords, lemmas, or stems, with or without stopword
removal;

4. the use of the question expansion: the system asks four different ques-
tions obtained by concatenating the original one with each of the four
possible candidate answers. In our running example, the virtual player
queries the Question Answering module using the following ques-
tions Who directed Blade Runner? Harrison Ford, Who directed Blade
Runner? Ridley Scott, Who directed Blade Runner? Philip Dick and
Who directed Blade Runner? James Cameron. If a criterion adopts
the question expansion, it uses four different sets of passages (one for
each question), instead of using the same set of passages.

Besides the above mentioned criteria for Answer Scoring, the distribu-
tional filter (Section 5) could be also adopted for comparing answers against
the retrieved passages. We finally decided to avoid using that filter because,
after the selection of the most relevant passages to a specific question, we
expect that the candidate answer is already contained in one of the passages,
and the filters based on pure lexical comparison are sufficient to properly
select and score it. Moreover, the answers usually contain one or two words,
and most of them are named entities, numbers, or dates, which could be
hardly identified by a distributional filter.

It is worth to mention how we managed a specific type of questions, i.e.
those formulated in negative form, such as Quale di questi super-criminali
non è uno storico nemico di Batman? (in English Which of these villains
is not a historical enemy of Batman?). Let us suppose that the candidate
answers are Dottor Destino, Mister Freeze, Pinguino, and Joker. The Ques-
tion Answering module returned passages containing Joker, Pinguino,
and Mister Freeze, that would be correct if the question was raised in positive
form. In fact, when the question is raised in negative form, the top-ranked
passages often contain the candidate answers that are actually those to be
discarded. For this reason, when the system detects a negative question, the
strategy for scoring the candidate answers is reversed, meaning that those
with the highest score become the less plausible and vice versa. The pro-
cess of detecting questions raised in negative form leverages several heuristics
based on the use of regular expressions.

23

7. Decision making

The Decision Making module is responsible for the decision about
answering to a specific question, retiring from the game or using one of
the available lifelines. The decision strategy evaluates the uncertainty of
the information provided by the Question Answering module and the
Answer Scoring, the available lifelines, and the level of the question in
order to take the final decision. The decision making strategy we devised
encapsulates two heuristics to manage the following situations of uncertainty:

1. the maximum score computed by the Answer Scoring for the four
candidate answers is very low. This means that either the quality of
the passages retrieved by the Question Answering module may be
low, hence those passages are not useful to find the correct answer to
the question, or the criteria adopted by the Answer Scoring for
assigning a score to the candidate answers are not satisfactory;

2. the difference between the score of the best candidate answer and the
second best candidate answer is very small. This means that the virtual
player is not able to provide a clear evidence of the most likely candidate
answer between the two candidate answers.

In a situation in which the virtual player has enough confidence in one of
the candidate answers, it can answer the question without using any lifeline.
In a situation of uncertainty, the decision making algorithm can take one of
the following decisions: 1) to retire from the game; 2) to use one or more
available lifelines; 3) to continue to play by providing a random answer. The
random strategy can be also useful in some situations, in particular at specific
levels of the game (6th or 11th question) when a wrong answer causes no loss
in the earned amount.

The decision making algorithm implements a simple strategy for man-
aging the lifelines, meaning that the order of their usage is independent of
the level of the current question. The system leverages first the Poll the
Audience lifeline and, if it does not return a candidate answer with a good
confidence, the Phone a Friend is explored, and finally 50:50. Other authors
faced the problem of defining a more dynamic decision making strategy for
the WWBM game. In [24], the decision making module constructs a decision
tree that encodes the probabilities and utilities at each potential future state
of the game. The tree consists of both decision forks for choosing whether to
answer the question, to use a lifeline, or to walk away, and chance forks to

24

encode the uncertainty of correctly answering the questions. The best choice
is obtained with the action that maximizes the expected utility. The strat-
egy is able to parameterize the risk of the virtual player, which can exhibit
a risk averse behavior or a more risk neutral one. Probabilities are assigned
to the nodes of the tree based on historical past performance on a sample
of questions from the associated difficulty level. A different strategy based
on dynamic programming is adopted in [40] to analyze two different objec-
tives: 1) to maximize the expected reward, 2) to maximize the probability
of reaching a given question. An analysis of the results presented in that
work allowed us to define the order in which our decision making module
should check and use the available lifelines. More specifically, we found out
that Poll the Audience must be checked before the others, while no specific
indications are provided for 50:50 and Phone a Friend.

The functions used by our decision making algorithm (Algorithm 1) are
the following:

• Best(Answers) and SecondBest(Answers) return the best and
second best candidate answer to a question q, respectively;

• CanUse(lifeline) returns true if that specific lifeline has not yet
been used in the current game, otherwise it returns false;

• Use(lifeline) returns a new set of answers together with their scores
obtained by adopting that specific lifeline;

• CanRisk() returns true if the current question allows the player to
provide a wrong answer without losing the earned money (6th or 11th
question), otherwise it returns false;

• Random(Answers) allows the virtual player to provide a random
answer to a question;

• Retire() allows the virtual player to retire and win the earned money.

The virtual player uses no lifelines if it has enough confidence in one of
the four answers (if statement at step 4). In this case the provided answer is
the one with the highest score (step 33). If the virtual player is in a situation
of uncertainty, it explores the available lifelines starting by Poll the Audience
(steps 5-11). If the player has enough confidence in the answer provided by
that lifeline (step 8), it returns that answer (step 9), otherwise it continues to

25

explore the other available lifelines. Steps 12-18 manage the Phone a Friend
lifeline, which allows to return the answer possibly provided by a friend (step
16). The usage of the 50:50 lifeline is related to the level of the game reached
by the player. If the user can risk, meaning that the money would not be
lost even providing a wrong answer to the question (step 19), the player uses
the 50:50 lifeline (step 20). The player chooses the answer with the highest
score (step 23) if that value is higher than a certain threshold, otherwise it
randomly returns one of the two remaining answers (step 25). If the player
cannot rely on lifelines, or it does not have enough confidence in the answers
provided by lifelines, then it returns a randomly chosen answer in case the
user can risk (steps 28-30), otherwise it retires from the game (step 31).

Given that the game is played using a board game variant, we imple-
mented a specific strategy to simulate the actual way of using lifelines. 50:50
is simulated in the same way as in the real game, i.e. by removing two wrong
answers among the four candidate answers. As in the real game, Phone a
Friend and Poll the Audience lifelines are not always able to return the cor-
rect answer. As regards Phone a Friend, it is worth to notice that usually the
higher the level of the game, the more difficult is to answer to the question.
Hence, this lifeline works as follows: it always returns the correct answer
when used for levels from 1 to 5; it randomly chooses between two alterna-
tives, i.e. providing the correct answer or not returning the answer at all,
when used for levels from 6 to 10; it randomly chooses between three alter-
natives, i.e. providing the correct answer, not returning the answer at all or
returning the wrong answer, when used for levels from 11 to 15. On the other
side, Poll the Audience is simulated in order to distribute the votes coming
from the audience (in percentage) among the candidate answers. Without a
real audience, we simulated the distribution of votes using a strategy which
takes into account both the current level of the question and a degree of
randomness. We first assign a score to the correct answer, then we randomly
distribute the remaining votes among the other candidate answers. The score
assigned to the correct answer – baseline – is inversely proportional to level of
the game, i.e. the more difficult the question, the lower the confidence; then,
the baseline score is randomly perturbed according to the level of the game,
between the lower and upper bound depicted in Figure 5. It is worth noting
that the perturbation of the baseline score is different for questions whose
level is between 1 and 5, 6 and 10, 11 and 15. For example, if the player
uses Poll the Audience at level 3, the baseline score is equal to 54%, and it
is randomly perturbed between 49% and 74%; the remaining votes (between

26

Algorithm 1 Decision making algorithm
1: procedure Decision Making(< q, (cA, cB, cC , cD) >, lifelines) .

Decision strategy based on the scores of the four candidate answers for
question q, and the available lifelines

2: BestAnswer ← Best(< q, (cA, cB, cC , cD) >)
3: SecondBestAnswer ← SecondBest(< q, (cA, cB, cC , cD) >) .

Selection of the best and second best candidate answers
4: if BestAnswer.score < threshold1

or (BestAnswer.score− SecondBestAnswer.score)
< (BestAnswer.score ∗ threshold2) then

. Situation of uncertainty: system not confident in the best answer,
or undecided between the best and second best candidate answer

5: if CanUse(Poll the Audience) then
6: audienceAnswers← Use(Poll the Audience)
7: lifelines← lifelines− {Poll the Audience}
8: if audienceAnswers.score > threshold1 then
9: Return Best(audienceAnswers)

10: end if
11: end if
12: if CanUse(Phone a Friend) then
13: friendAnswer ← Use(Phone a Friend)
14: lifelines← lifelines− {Phone a Friend}
15: if friendAnswer 6= null then
16: Return friendAnswer
17: end if
18: end if
19: if (CanUse(50:50) and CanRisk()) then
20: 50 : 50answers← Use(50:50)
21: lifelines← lifelines− {50:50}
22: if 50 : 50answers.score > threshold1 then
23: Return Best(50:50answers)
24: else
25: Return Random(50:50answers)
26: end if
27: end if
28: if CanRisk() then
29: Return Random(answers) . No more lifelines but the

player can risk
30: end if
31: Retire()
32: else
33: Return BestAnswer
34: end if
35: end procedure

27

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sc
or
e
of
 th

e
co
rr
ec
t a

ns
w
er

Level of the game

Simulation of Poll the Audience lifeline

Lower bound Baseline score Upper bound

Figure 5: Variability of the score assigned to the correct answer when Poll the Audience
lifeline is used.

51% and 26%) are randomly distributed among the remaining answers; if
the lifeline is used at level 14, the baseline score is 32% and it is randomly
perturbed between 22% and 37%, and the remaining votes (between 78%
and 63%) are randomly distributed among the remaining answers.

8. Experimental Evaluation

The goal of the evaluation is twofold:

1. to assess the effectiveness of the Question Answering and Answer
Scoring modules to answer to questions of the game, and compare
the results with those obtained by human players. The experiment is
discussed in Section 8.1;

2. to evaluate the accuracy of the virtual player to play the game, taking
also into account the strategy implemented by the Decision Making
module, and to compare the results with those obtained by human
players. The experiment is discussed in Section 8.2.

We used two datasets: one containing questions from the WWBM of-
ficial Italian boardgame, and one containing questions from the English
boardgame3. Both datasets contain 1,960 questions, subdivided in 15 groups,
one for each level of the game. The first 10 levels contain 160 questions each,

3Datasets available at www.di.uniba.it/%7Elops/WWBMdatasets.zip

28

0
2
4
6
8
10
12
14
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15#
ne

ga
tiv

e
qu

es
tio

ns

Level of the game

Distribution of negative questions

Italian dataset English dataset

Figure 6: Distribution of negative questions per level of the game.

while levels 11, 12, 13, 14 and 15 contain 120, 90, 70, 50 and 30 questions, re-
spectively. 113 questions for Italian, and 84 for English are in negative form.
The distribution of negative questions per level of the game is reported in
Figure 6.

While previous results to compare with are available for the English ver-
sion of the game (even though not on the same dataset), we are not aware of
previous results for Italian, i.e. we do not have any baseline to compare with.
The metric adopted for the evaluation is the accuracy, i.e. the proportion of
correctly answered questions, computed as the ratio between the number of
correct answers (nc) and the total number of questions (n): accuracy = nc

n
.

The significance of the results is assessed using the McNemar’s test.

8.1. Experiment 1: evaluation of the performance of QA and Answer Scoring
The goal of this experiment is to assess the accuracy of the five criteria

for answer scoring, properly configured using the parameters described in
Section 6, namely:

• number of processed passages: we tested 10 configurations, by using
the top-n, n = 1, 2, 3, 4, 5, 10, 15, 20, 25, 30 passages returned by the
QA module;

• use of the score wi for the passages returned by the QA module: we
tested 2 configurations, using and not using the weight for each passage
returned by the QA module;

29

• level of linguistic analysis adopted to process the passages returned by
the QA module: we tested 3 configurations, which represent passages
using keywords, stems, or lemmas. We also run 2 further configurations,
using and not using stopwords removal.

• use of question expansion: we tested 2 configurations, with and without
question expansion.

Overall, we have a set of 1,200 different configurations used to assign a score
to each of the four possible answers to a question of the game: starting from
these scores, the answer with the highest one is selected. The Question
Answering system was configured using all the filters listed in Section 5.

Table 2 reports the accuracy of the best 15 configurations, averaged over
the whole set of 1,960 questions of the Italian and English datasets. It is
worth to note that Overlap and Density are the best performing criteria for
both the Italian and the English datasets (the top-85 best configurations are
obtained using those criteria). The analysis of the results unveils the useful-
ness of taking into account a considerable number of passages, the usefulness
of leveraging the score of the passages returned by the QA module, and the
effectiveness of the process of stopwords removal. Finally, the question ex-
pansion process seems to negatively affect the accuracy of the system. The
worst criterion is Title Levenshtein for both Italian and English: indeed, the
worst 100 results are obtained by that criterion.

In order to have a clear picture of the accuracy of the whole set of config-
urations, Table 3 reports, for each criterion, its best and worst configuration.
We observe that the best and worst configurations of each criterion for Italian
and English are pretty much the same, even though the accuracy obtained
on the English dataset is 5% lower than that obtained for Italian, on aver-
age. Statistical tests show that the best configuration of the best criterion
is significantly better than the best configurations for all the other criteria,
regardless the language (p < 0.02).

Starting from the accuracy of the single configurations, we tried to com-
bine them in order to improve the overall accuracy of the Answer Scoring.
In [36], we carried out a greedy combination: we started with the best per-
forming configuration and we iterate by greedily adding one configuration at
a time by selecting exclusively those that provided an improvement in terms
of accuracy.

In this work we propose a combination based on a pointwise learning
to rank approach using regression-based algorithms [28], in which question-

30

Rank Configuration Accuracy
Italian dataset

1 Overlap(P=25, ST, Score=Yes, SW=Yes, QE=No) 64.29%
2 Overlap(P=25, LEM, Score=Yes, SW=Yes, QE=No) 64.29%
3 Density(P=3, KWD, Score=Yes, SW=No, QE=Yes) 64.03%
4 Density(P=30, ST, Score=Yes, SW=Yes, QE=No) 64.03%
5 Density(P=30, LEM, Score=Yes, SW=Yes, QE=No) 64.03%
6 Overlap(P=20, ST, Score=Yes, SW=Yes, QE=No) 63.78%
7 Overlap(P=20, LEM, Score=Yes, SW=Yes, QE=No) 63.78%
8 Overlap(P=30, ST, Score=Yes, SW=Yes, QE=No) 63.78%
9 Overlap(P=30, LEM, Score=Yes, SW=Yes, QE=No) 63.78%
10 Density(P=20, ST, Score=Yes, SW=Yes, QE=No) 63.27%
11 Density(P=20, LEM, Score=Yes, SW=Yes, QE=No) 63.27%
12 Density(P=25, KWD, Score=Yes, SW=Yes, QE=No) 63.01%
13 Overlap(P=15, ST, Score=Yes, SW=Yes, QE=No) 62.76%
14 Overlap(P=15, LEM, Score=Yes, SW=Yes, QE=No) 62.76%
15 Overlap(P=20, ST, Score=No, SW=Yes, QE=No) 62.76%

English dataset
1 Overlap(P=25, LEM, Score=Yes, SW=Yes, QE=No) 59.47%
2 Overlap(P=25, ST, Score=Yes, SW=Yes, QE=No) 59.38%
3 Density(P=3, KWD, Score=Yes, SW=No, QE=Yes) 59.26%
4 Overlap(P=20, ST, Score=Yes, SW=Yes, QE=No) 59.22%
5 Density(P=30, ST, Score=Yes, SW=Yes, QE=No) 59.08%
6 Density(P=30, LEM, Score=Yes, SW=Yes, QE=No) 59.08%
7 Overlap(P=30, ST, Score=Yes, SW=Yes, QE=No) 58.99%
8 Density(P=20, ST, Score=Yes, SW=Yes, QE=No) 58.84%
9 Overlap(P=15, LEM, Score=Yes, SW=Yes, QE=No) 58.72%
10 Density(P=25, KWD, Score=Yes, SW=Yes, QE=No) 58.37%
11 Overlap(P=30, LEM, Score=Yes, SW=Yes, QE=No) 58.35%
12 Density(P=20, LEM, Score=Yes, SW=Yes, QE=No) 58.21%
13 Overlap(P=20, LEM, Score=Yes, SW=Yes, QE=No) 58.14%
14 Overlap(P=20, ST, Score=No, SW=Yes, QE=No) 57.99%
15 Overlap(P=15, ST, Score=Yes, SW=Yes, QE=No) 57.97%

Table 2: Performance of the top-15 configurations (averaged over all the questions).
Acronyms: P # of passages, KWD Keywords, LEM Lemmas, ST Stems, Score Use
of the score of the passage, SW use of stopword removal, QE Use of the question expan-
sion.

31

Best and worst configuration for each criterion Accuracy
Italian dataset

BEST: Overlap(P=25, ST, Score=Yes, SW=Yes, QE=No) 64.29%
WORST: Overlap(P=1, KWD, Score=Yes, SW=No, QE=No) 42.60%
BEST: Density(P=3, KWD, Score=Yes, SW=No, QE=Yes) 64.03%
WORST: Density(P=1, LEM, Score=No, SW=No, QE=No) 43.37%
BEST: ES(P=30, KWD, Score=Yes, SW=Yes, QE=No) 59.18%
WORST: ES(P=1, KWD, Score=Yes, SW=No, QE=No) 42.09%
BEST: LCS(P=3, KWD, Score=Yes, SW=No, QE=Yes) 57.14%
WORST: LCS(P=1, LEM, Score=Yes, SW=Yes, QE=No) 41.07%
BEST: TL(P=1, KWD, Score=Yes, SW=Yes, QE=Yes) 40.05%
WORST: TL(P=1, LEM, Score=Yes, SW=No, QE=No) 20.15%

English dataset
BEST: Overlap(P=25, LEM, Score=Yes, SW=Yes, QE=No) 59.47%
WORST: Overlap(P=1, KWD, Score=Yes, SW=No, QE=No) 37.74%
BEST: Density(P=3, KWD, Score=Yes, SW=No, QE=Yes) 59.26%
WORST: Density(P=1, ST, Score=Yes, SW=No, QE=No) 38.58%
BEST: ES(P=30, KWD, Score=Yes, SW=Yes, QE=No) 54.62%
WORST: ES(P=1, KWD, Score=Yes, SW=No, QE=No) 37.46%
BEST: LCS(P=3, KWD, Score=Yes, SW=No, QE=Yes) 52.19%
WORST: LCS(P=1, LEM, Score=Yes, SW=Yes, QE=No) 36.04%
BEST: TL(P=1, KWD, Score=Yes, SW=Yes, QE=Yes) 35.17%
WORST: TL(P=1, LEM, Score=No, SW=No, QE=No) 15.12%

Table 3: Best and worst performance of each single criterion along with its configuration
(averaged over all the questions). Acronyms: ES Exact Substring, LCS Longest Common
Subsequence, TL Title Levenshtein, KWD Keywords, LEM Lemmas, ST Stems, P #
of passages, Score Use of the score of the passage, SW use of stopword removal, QE Use
of the query expansion.

answer pairs (q, a) are labeled with the relevance judgments of the answer
a with respect to the question q. In our setting, the correct answer to a
question of the game is labeled with the relevance judgment 1, while the
other three incorrect answers are labeled with 0. Each training example is
represented using a feature vector consisting of the level of the question (from
1 to 15), and all the 1,200 single scores obtained by the above mentioned
configurations. We opted for using Random Forests (RF) [6] algorithm, an
ensemble learning method, combining different tree regressors built using

32

different samples of the training data and random subsets of data features.
The final result is obtained by averaging the output of the single trees. The
use of different data samples from the same distribution and of different
feature sets for learning the individual trees prevent overfitting. We adopted
the implementation provided by the RankLib library4.

Questions in each dataset are split into a training set Tr, and a test set Ts.
The methodology adopted for obtaining Tr and Ts was the stratified 5-fold
cross validation, where the stratification process ensures each fold contains
the same distribution of questions for the different levels of the game. Given
the size of each dataset (1,960 questions), applying 5-fold cross validation
means that the dataset is divided into 5 disjoint partitions, each containing
392 questions. The experiment was performed in 5 steps. At each step, 4
partitions were used as training set Tr (1,568 questions), whereas the re-
maining partition was used as test set Ts. The steps were repeated until
each of the 5 disjoint partitions was used as the Ts, and results were aver-
aged over the 5 runs. In order to tune the parameters of the learning to rank
(number of trees, learning rate, subsampling rate), we also used a validation
set, obtained by sampling questions from the training set of each run. We
sampled 12.5% of the training set (196 questions), and even in this case we
took into account the distribution of the questions among the different lev-
els (stratification). To sum up, at each step, the training set contains 1,372
questions, the validation set contains 196 questions, and the remaining 392
questions are used as test set. The final accuracy obtained by combining
all the individual configurations through the learning to rank strategy is
equal to 79.64% for Italian, and 76.41% for English (averaged over the five
runs), which is significantly better (p << 0.0001) than the accuracy of the
best single configuration (64.29% for Italian, 59.47% for English). The result
obtained for English is similar to that achieved in [24], in which the sys-
tem correctly answered about 75% of questions, even though a different and
smaller dataset was used. More details about the accuracy for each different
level of difficulty of the game is presented and discussed in Section 8.1.3.

8.1.1. Unanswerable questions and error analysis
In order to understand the questions for which the system is not able to

provide a correct answer, we classified them in specific categories, and we

4http://sourceforge.net/p/lemur/wiki/RankLib/

33

performed a proper error analysis. The following list contains categories of
questions which remain unanswerable by our system:

• Questions regarding concepts not occurring in Wikipedia/DBpedia: some
of these questions concern astrology, proverbs and sayings, and religion.

• Questions regarding concepts which are not explicit in Wikipedia/DBpedia:
the system may not be able to provide an answer to some questions,
even though the necessary information is contained in the knowledge
sources. For example, the question Quale di questi attori non è figlio
d’arte? (in English Which of these actors is not an actor son of an
actor father?) would require to match the concept figlio d’arte (actor
son of an actor father), which is not explicit in Wikipedia/DBpedia.

• Questions whose answers involve special numbers, periods of time, and
mathematical computations: the system fails to provide an answer when
it contains Roman numerals, or it implies the computation of time
frames, or some mathematical computations. For example, the candi-
date answers to the question In quale secolo fu costruita la prima penna
a sfera? (in English In what century was built the first ballpoint pen?)
are A) XX B) XVII C) XVIII D) XIX, but the system is not able to
find a match with any of the candidate answers; the question How long
was William Harrison in office as the ninth president of USA? involves
the computation of a time frame which the system is not able to carry
out; the question How many degrees are each of the other two angles
in an isosceles triangle, if one angle is 120◦? requires that the system
knows that the total of all angles in any Euclidean triangle would sum
to 180◦.

• Questions that require language proficiency: questions such as Nella lin-
gua latina, il vocativo plurale è sempre uguale a che cosa? (in English In
Latin language, the vocative plural is always equal to what?), would re-
quire a specific knowledge which is not encoded in Wikipedia/DBpedia.

• Questions that require to make a comparison: questions such as Quale
tra queste regioni italiane ha la superficie minore? (in English Which
of these regions of Italy has the lowest surface?) would require to make
a comparison and the selection of the minimum value.

34

• Questions that require knowledge of visual properties: questions such as
Quale di queste squadre di calcio non ha come simbolo un esemplare di
lupo? (Which of these football teams does not have a wolf as symbol?)
would require the knowledge of visual properties.

The error analysis carried out on the results of the experiments in the pre-
vious section unveils that for both Italian and English about 13% of errors
are due to the lack of information in Wikipedia/DBpedia, about 57% con-
cerns: 1) questions whose concepts are not explicit in Wikipedia/DBpedia
(15%); 2) questions which involve numbers, time and math (13%); 3) ques-
tions which require language proficiency (14%); 4) questions which require
to make a comparison (7.50%); 5) questions which require knowledge about
visual properties (7.50%). The remaining 30% concerns errors due to the
wrong scoring of answers or due to other factors, such as the heuristics to
recognize and manage negative questions (Section 6). Hence, in order to eval-
uate how much effective that strategy is, we have evaluated on one hand the
accuracy of regular expressions at correctly detecting negative questions, and
on the other hand the effectiveness of the reverse scoring method. The accu-
racy of the heuristics based on the use of regular expressions is F1 = 89.23%
for the Italian dataset, and F1 = 98.20% for the English one, while the re-
verse scoring method was evaluated by taking into account the percentage
of negative questions for which the reverse scoring strategy was useful (i.e.
the answer with the lowest score was correct), harmful (i.e. the answer with
the lowest score was wrong) or indifferent (i.e. the correct answer is neither
the one with the highest score nor the one with the lowest score): for the
Italian dataset percentages are 80%, 9%, and 11%, respectively, while for the
English dataset percentages are 96%, 1%, and 3%, respectively. This means
that the reverse scoring method is effective in practice.

Finally, in order to have some details about the DBpedia benefit, we have
computed the number of questions for which the QA module returned pas-
sages coming from DBpedia. 290 questions for the Italian dataset, and 293
for the English one rely on passages coming from DBpedia (besides those
coming from Wikipedia), and this means that the answer for those questions
could potentially be extracted from DBpedia. For the sake of completeness
we have also evaluated the accuracy of the Rocchio classifier described in
Section 5.1, which allows to map different lexicalizations of questions asking
for a specific property to the corresponding DBpedia property. The accu-
racy of the classifier, computed using leave-one-out is 85.59% for the English

35

dataset, and 83.57% for the Italian one.

8.1.2. Ablation tests
To gain insights about the power of the different parameters used to

configure each answer scoring criterion, we performed feature selection using
ablation tests, by removing single features or groups of features.

As regards the ablation of single features, we trained a different model
by removing each feature related to each single configuration, and measuring
the corresponding predictive accuracy of the learning to rank model (i.e. the
process is repeated 1,200 times). The analysis of results unveils that only
160 out of 1,200 times the accuracy of the learned models is lower than that
obtained by the best configuration, regardless the language adopted. The
maximum decrease of accuracy is 4.84% for Italian, and 5.00% for English.
It is interesting to note that in each one of those 160 learned models a feature
corresponding to a configuration adopting keywords for representing passages
is removed. Hence the signal brought by keywords is more relevant than those
brought by stems and lemmas.

We also performed ablation tests by removing groups of features. We
defined the following twelve different groups:

• Five groups, each corresponding to a different answer scoring criterion,
i.e. each group contains all the features corresponding to all the con-
figurations of each single criterion;

• Three groups, each corresponding to a different level of linguistic anal-
ysis adopted for processing the passages of text returned by the QA
module;

• Two groups, each containing all the configurations using and not using
the question expansion strategy;

• Two groups, each containing all the configurations using a number of
passages from 1 to 5, and from 10 to 30, respectively.

Figure 7 reports the decrease of accuracy obtained by different models
trained by removing each single group of features. Groups with higher values
are better, meaning that those features have a higher impact on the overall
performance of the model, since their ablation leads to a higher decrease of
accuracy. All the results are statistically significant when compared to the
best configuration obtained by the learning to rank strategy (p << 0.0001).

36

As regards the groups corresponding to the answer scoring criteria, the
best performance is obtained by LCS, followed by TL, Density, Overlap and
ES. A comparison with the performance of the single configurations reported
in Table 2 and Table 3, shows that Overlap and Density criteria are the best
performing individually, but when they are individually removed, the overall
performance is not significantly different. This supports the finding that the
signal they bring is very overlapping. On the other side, the TL criterion was
the worst performing individually but, when individually removed, it leads to
a decrease of the overall accuracy greater than 5%. As regards the linguistic
analysis adopted for processing the passages of text returned by the QA mod-
ule, keyword-based representations have the best performance, followed by
stems and lemmas which behave in a similar way. This was already observed
by removing one configuration at a time, where the ablation of configurations
using representations based on stems or lemmas did not lead to a decrease of

2,32%

4,25%

5,90%

6,70%

8,94%

9,68%

11,49%

1,91%

3,93%

4,37%

5,59%

11,18%

2,29%

4,84%

6,12%

6,63%

8,98%

9,74%

11,78%

2,04%

3,57%

4,33%

5,61%

11,27%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%

10‐30

1‐5

No

Yes

Lemmas

Stems

Keywords

ES

Overlap

Density

TL

LCS

P
as
sa
ge
s

(6
0
0
)

Q
E

(6
00
)

Li
n
gu
is
ti
c

an
al
ys
is

(4
00
)

C
ri
te
ri
a

(2
40
)

Decrease of accuracy

Italian dataset English dataset

Figure 7: Decrease of accuracy for ablation of feature groups. For each group, the number
of features removed is also reported.

37

accuracy. As regards the question expansion mechanism, methods adopting
it show a slightly better performance (less than 1%) than those not adopting
it, and this is in line with the performance of the single configurations, in
which we observed that the question expansion does not seem to have im-
pact on the accuracy of the system. Finally, the configurations using a fewer
number of passages (from 1 to 5) are better than those using more passages
(from 10 to 30). This seems to contradict the finding stemmed from the
analysis of the top-15 configurations (Table 2), where the best performance
were obtained using 15 to 30 passages. A possible interpretation is that the
information overlap existing using 15 to 30 passages is higher than that ex-
isting using 1 to 5 passages, and this led the former combination to be less
effective than the latter.

8.1.3. Per level analysis of system and human performance
We compared the performance of QA and Answer Scoring with that of

human players to provide answers to questions at different levels of difficulty.
Playing successfully the WWBM game heavily depends on the player’s

knowledge about popular culture, hence the comparison with the human
players is only performed for the Italian dataset. To this purpose we in-
volved 98 human players, selected using the availability sampling strategy
[45] (Italian students or graduates). The dataset of 1,960 Italian questions
was randomly split into 98 disjoint sets of 20 questions each; each set was
assigned to a different user, who provided the answers without having the
possibility to consult the Web or other knowledge sources (the level of each
question was not disclosed to the users).

As baseline we queried Google with each question and we retrieved the
top-30 snippets of text returned by the search engine. Hence, we computed
a score for each candidate answer by multiplying the number of times the
answer occurred in each snippet with the inverse of the rank of the snippet.
Finally, we selected the candidate answer with the highest score (a random
selection was adopted to break ties).

Figure 8 reports, for each level of the game:

1. the accuracy of the best configuration obtained by the learning to rank
strategy for Italian and English, whose average accuracy is 79.64%
(σ = 6.07%) for Italian and 76.41% (σ = 1.45%) for English

2. the accuracy of the baseline, which is 67.13% for Italian and 71.80%
for English

38

3. the accuracy achieved by the human players, which is 51.33% (σ =
17.61%) for Italian.

All results are statistically significant (p << 0.0001). The system has
quite similar performance for all the levels of the game. As regards the
Italian dataset, the best performance is obtained for level 2, while the worst
is obtained for levels 7 and 13. However, the error analysis did not report any
specific problem for those levels: we only observed a higher concentration of
questions the system is not able to deal with (see Section 8.1.1) in one of the
five folds. As regards English, the performance is almost constant for all the
levels of the game (indeed the standard deviation is very low).

Accuracy of human players (for Italian) decreases almost monotonically,
with the best performance obtained on the first level of the game, and the
worst on level 14. This observation is coherent with the fact that lower levels
of the game correspond to easier questions, while higher levels correspond to
more complex questions for which a deeper knowledge is required to provide
the correct answers.

It is evident the primacy of the system (for Italian), which significantly
outperforms humans for all the 15 levels of the game (not only on average).
It is worth to analyze the performance of the players for groups of questions
from 1 to 5, 6 to 10, and 11 to 15, respectively, when they reach the guar-
antee points where the money earned is banked. As regards the first group
of questions, humans obtain the worst performance on the (fourth and) fifth
question (61.88%), and this is not surprising since this is the first point in
which players have the guarantee to keep the earned money. Even though
the level of the questions is not disclosed to human players, our hypothesis
is that milestone questions are likely more difficult, due to the way the game

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

Ac
cu
ra
cy
 %

Level of the game

Human and system performance for Italian

Human players QA and Answer Scoring Google baseline

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

Ac
cu
ra
cy
 %

Level of the game

System performance for English

QA and Answer Scoring Google baseline

Figure 8: Per level accuracy of system and human performance.

39

is designed. Surprisingly, this behavior is not observed for the second mile-
stone question, albeit the performance on that question is below the average.
Results obtained by humans on the last group of questions are all below the
average, and not comparable with those obtained by the system (absolute
difference in performance ranging from +38% to +56%).

The baseline is always better than human players (for Italian), but it is
less accurate than the system (absolute difference in performance amounts
to −12.51% for Italian, and −4.61% for English, on average).

To sum up, the virtual player built using the QA and Answer Scoring
modules has the potential to beat human players when playing a real game
with its rules, since it is able to correctly answer to questions at different lev-
els of difficulty. We observe very similar performance regardless the language,
i.e. the Question Answering framework and the Answer Scoring cri-
teria work in the same way for Italian and English. The small differences in
performance are likely due to the different number of documents extracted
from Wikipedia (almost one million for Italian, and three millions for En-
glish), which could have impact on the performance of the search engines in
the QA framework, and of course to the fact that the two datasets are not
comparable.

However, playing a real game is a very complex task, since it requires
a proper strategy to manage the lifelines, to decide whether to answer to a
question or to retire from the game by taking the earned money. This is the
purpose of the experiment described in the next section.

8.2. Experiment 2: evaluation of the virtual player
The goal of this experiment is to evaluate the ability of the virtual player

to play the game, by implementing a proper strategy to use the lifelines, to
decide whether to answer to a question even in a condition of uncertainty or
to retire from the game by taking the earning money. We ran the experiment
by comparing the performance of the human players with the performance
achieved by the best system configuration obtained by using the learning
to rank approach, and whose strategy to play the game is defined by the
decision making algorithm described in Section 7. The comparison is carried
out by evaluating the level reached during the game and the money earned
by the players5. As in the previous experiment, the comparison between the

5The Italian and English versions of the game have a different currency and a different
distribution of monetary values for each level of the game. For the sake of comparison we

40

€ 0,00
€ 20.000,00
€ 40.000,00
€ 60.000,00
€ 80.000,00
€ 100.000,00
€ 120.000,00
€ 140.000,00

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

Ea
rn
ed

 m
on

ey

Threshold2

Threshold2 optimization

Average income (Italian) Average income (English)

Figure 9: Plot of the average income for different values of the threshold.

performance of the virtual player and humans is carried out only for Italian.
We involved 35 subjects, different from those involved in the previous

experiment, who overall played 325 games. Each game consists of questions
selected by the Game Manager, which randomly sampled one question for
each level as the game proceeds (games played by the same human player
always have different questions for the same level). On the other side, the
virtual player played 160 games, whose questions are also selected by the
Game Manager from both the Italian and English datasets. An important
setting to configure the virtual player is the value of the two thresholds used
by the decision making algorithm for assessing a situation of uncertainty
(Section 7). Threshold1 is used to evaluate the score of the best candidate
answer, while threshold2 allows to evaluate the difference between the score
of the best and the second best candidate answer. We decided to assign 0 to
threshold1, i.e. answers with a score different from zero are always trusted
and used by the virtual player. The value of threshold2 was optimized by
empirically varying its value, and selecting the one which led the virtual
player to obtain the highest average income on the questions in the validation
set of the first fold. Threshold2 was finally set to 0.2 for both Italian and
English (plot showing how different values affect the average income depicted
in Figure 9).

Figure 10 shows the boxplots of the levels reached during the game and

decided to use the same currency and monetary values as for Italian.

41

Humans Virtual Player for Italian Virtual Player for English

2
4

6
8

10
12

14
Levels reached during the game

le
ve

ls

1
2

3
4

5
6

7
8

9
11

13
15

Humans Virtual Player for Italian Virtual Player for English

Earned money

€ 0

€ 10

€ 100

€ 1,000

€ 10,000

€ 100,000

€ 1,000,000

Figure 10: Distribution of the levels reached during the game and the money earned by
the players (in log scale). Upper and lower ends of the boxes represent the 3rd and 1st

quartile, respectively. Whiskers extend to the most extreme data point which is no more
than 1.5 times the interquartile range. Median values are depicted with solid lines, mean
values with solid points.

of the money earned by the players, while Figures 11 and 12 report the
distribution of games reaching a specific level and the distribution of games
ended with the income in a specific interval.

All the players are able to reach the last level of the game, but the average
level reached by humans is between five and six (5.65), with respect to the
virtual player which reaches a level between seven and eight, i.e. 7.88 and
7.60 for Italian and English, respectively. This is also highlighted by the
median value, which is the fifth level for humans and the seventh for the
virtual player. More than half of the times (51.38%) the human players
ended the game by reaching levels from 1 to 5, while 40% of times reached
levels 6 to 10. Few times (8.62%) humans were able to reach the last levels

Level 1 to 5 Level 6 to 10 Level 11 to 15
Human players 51.38% 40.00% 8.62%
Virtual player for Italian 30.00% 39.38% 30.62%
Virtual player for English 36.25% 38.13% 25.62%

0%
10%
20%
30%
40%
50%
60%

%
 o

f g
am

es

Level reached

Figure 11: Distribution of games reaching a specific level.

42

€ 0]0, 3,000] €]3,000, 20,000] €]20,000, 1,000,000] €
Human players 51,38% 36,92% 8,31% 3,39%
Virtual player for Italian 28,75% 30,62% 25,63% 15,00%
Virtual player for English 35,62% 25,00% 23,75% 15,63%

0%
10%
20%
30%
40%
50%
60%

%
 o

f g
am

es

Earned money

Figure 12: Distribution of games ended with the income in a specific interval.

(level 15 reached only once). The distribution of the games ended by the
virtual player in the three groups of questions is almost uniform for both
Italian and English (with a slightly better performance for Italian), and this
is coherent with the results in Figure 8, in which the accuracy of the system
is very similar for all the levels of the game.

301 out of 325 games (92.61%) played by humans ended due to an error in
the response, while 24 times (7.39%) the players ended the game by retiring
and taking the earned money (in three cases the players retired from the game
at level 6 and 11, even though a wrong answer would not have any effect on
the earned money). Moreover, human players never ended the game with
the maximun prize. Differently from humans, the virtual player was able
to successfully complete the game. Indeed, it earned e 1,000,000 17 times
(10.62%) for Italian, and 12 times (7.50%) for English. 116 games (72.50%)
ended due to a wrong answer by the virtual player for Italian, while 27 times
(16.87%) it retired from the game without providing the answer. The virtual
player for English ended 114 games (71.25%) due to a wrong answer, and
retired from the game 34 times (21.25%). The highest percentage of games
ended by the virtual player without providing the answer highlights its more
conservative and low risk strategy. It is interesting to note that the decision
making algorithm does not allow the virtual player to end the game at level
6 or 11.

The money earned by humans is e 5,926 on average, while the aver-
age income of the virtual player is significantly higher. Indeed, it earned e
114,531 for Italian, and e 88,878 for English. The detailed figures are shown
in Figure 12, where the games ended with a null income are reported, as well
as the games ended in each interval corresponding to milestone questions.
Most of the games played by humans (88.30%) ended with a null income

43

or by answering questions in the first group. This means that they reached
the last two groups of questions 11.70% of times, differently from the virtual
player which reached the last two groups of questions about 40% of times for
both Italian and English. The fewer percentage of games ended with a null
income by the virtual player confirms its risk averse behavior (albeit some
differences between Italian and English exist) that, coupled with its ability
to provide correct answers regardless the level of the game, allows it to end
the games with a higher average income.

Figure 13 reports the use of the lifelines during the different stages of the
game. The comparison of the strategies adopted by humans and the virtual
player is not fair since the latter uses a static order for the available lifelines,
as defined by the decision making algorithm (i.e. Poll the Audience, Phone a
Friend, 50:50). Despite this limitation, overall, the support provided by the
lifelines to the virtual player is valuable. Indeed, the virtual player is able
to provide the correct answer 114 times for Italian and 141 times for English
thanks to the lifelines. Human players and the virtual player use a single
lifeline per game on average, hence they behave in a very similar way. During
the first stages of the game, the frequency of usage of Poll the Audience by
the virtual player (42.86% both for Italian and for English) is as much as the
cumulative frequency of use of all the three available lifelines by the human
players (41.11%). This means that the virtual player is forced to use that
lifeline before the others, as defined in the decision making algorithm, while
the human players use all the available lifelines, even though they prefer

Level
1 to 5

Level
6 to 10

Level
11 to 15

Level
1 to 5

Level
6 to 10

Level
11 to 15

Level
1 to 5

Level
6 to 10

Level
11 to 15

Poll the Audience Phone a Friend 50‐50
Humans 19,63% 16,18% 1,33% 11,14% 19,36% 2,12% 10,34% 15,65% 4,24%
VP for Italian 42,86% 14,29% 3,40% 8,84% 18,37% 5,44% 0,00% 2,72% 4,08%
VP for English 42,86% 13,14% 1,71% 12,57% 18,86% 5,14% 0,00% 4,57% 1,14%

0%
5%
10%
15%
20%
25%
30%
35%
40%
45%

%
 o
f l
ife

lin
es

Use of lifelines

Figure 13: Distribution of the lifelines used during the game.

44

Poll the Audience during the first stages of the game. The frequency of use
of Phone a Friend by humans and the virtual player is quite similar. As
expected, 50:50 is never used by the virtual player during the first levels of
the game, while humans uniformly used it in all the levels of the game.

To sum up, as expected from the results of Experiment 1, the virtual
player is able to outperform humans, even though it adopts a very simple
decision making strategy. The better performance is in terms of both the
average reached level and the earned money at the end of the game. The
performance of the virtual player for Italian and English is pretty much the
same, except the average income, which is significantly better for Italian than
English. As observed for the performance of the QA and Answer Scoring,
this is likely due to the different size of the knowledge sources for Italian
and for English, as well as of course to the different datasets used in the
experiment.

9. Conclusions

In this work we proposed the architecture of a virtual player for the
language game “Who Wants to Be a Millionaire?”, based on the following
modules:

• Question Answering: it is able to retrieve passages of text relevant
to a specific question expressed in natural language, by using Wikipedia
and DBpedia open knowledge sources;

• Answer Scoring: it implements several heuristics based on the anal-
ysis of the results returned by the Question Answering module, in order
to assign a score to the four candidate answers;

• Decision Making: it chooses the strategy to play the game, by ex-
ploiting the scores of the four candidate answers, the availability of
lifelines, and the current level of the game.

Hence, we can provide an answer to both Research Question 1 (RQ1)
and Research Question 2 (RQ2). As regards RQ1, this work actually led to
the definition of an effective language-independent framework for QA and
answer validation able to leverage Wikipedia and DBpedia open knowledge
sources, as well as to an effective strategy to combine different criteria for
scoring candidate answers through machine learning techniques.

45

As regards RQ2, using the Question Answering and Answer Scoring mod-
ules in RQ1 we were able to build a virtual player which outperforms human
players in terms of average accuracy in correctly answering to questions of
the WWBM game, and in terms of ability to play real games with their rules.

We plan to enhance the decision making algorithm, in order to allow a
smarter management of the lifelines, and a less conservative strategy which
could lead to a more risk neutral player, with the hope that these refine-
ments will further improve the overall accuracy of the system. Moreover,
specific heuristics could be devised to answer to questions which are currently
unanswerable for our system (Section 8.1.1) in order to further improve its
performance.

References

[1] N. Aggarwal, P. Buitelaar, A System Description of Natural Language
Query Over DBpedia, in: C. Unger, P. Cimiano, V. Lopez, E. Motta,
P. Buitelaar, R. Cyganiak (Eds.), Proceedings of Interacting with Linked
Data (ILD 2012), Workshop Co-Located with ESWC 2012, volume 913,
CEUR Workshop Proceedings, 2012, pp. 96–99.

[2] K. Ahn, J. Bos, D. Kor, M. Nissim, B.L. Webber, J.R. Curran, Question
Answering with QED at TREC 2005, in: E.M. Voorhees, L.P. Buck-
land (Eds.), Proceedings of the Fourteenth Text REtrieval Conference,
TREC 2005, volume Special Publication 500-266, National Institute of
Standards and Technology (NIST), 2005.

[3] P. Basile, M. de Gemmis, P. Lops, G. Semeraro, Solving a Complex
Language Game by using Knowledge-based Word Associations Discov-
ery, IEEE Transactions on Computational Intelligence and AI in Games
(To appear). DOI 10.1109/TCIAIG.2014.2355859.

[4] C. Bizer, The Emerging Web of Linked Data, IEEE Intelligent Systems
24 (2009) 87–92.

[5] E. Breck, J.D. Burger, L. Ferro, L. Hirschman, D. House, M. Light,
I. Mani, How to Evaluate Your Question Answering System Every Day
and Still Get Real Work Done, in: Proceedings of the Second Interna-
tional Conference on Language Resources and Evaluation, LREC 2000,
European Language Resources Association, 2000, pp. 1495–1500.

46

[6] L. Breiman, Random Forests, Machine Learning 45 (2001) 5–32.

[7] E. Cabrio, A.P. Aprosio, J. Cojan, B. Magnini, F. Gandon, A. Lavelli,
QAKiS@QALD-2, in: C. Unger, P. Cimiano, V. Lopez, E. Motta,
P. Buitelaar, R. Cyganiak (Eds.), Proceedings of Interacting with Linked
Data (ILD 2012), Workshop Co-Located with EWSC 2012, volume 913,
CEUR Workshop Proceedings, 2012, pp. 87–95.

[8] J.J. Castillo, The Contribution of FaMAF at QA@CLEF 2008: Answer
Validation Exercise, in: Working Notes of the CLEF 2008 Workshop,
2008, pp. 17–19.

[9] J. Chen, A. Diekema, M.D. Taffet, N.J. McCracken, N.E. Ozgencil,
O. Yilmazel, E.D. Liddy, Question Answering: CNLP at the TREC-
10 Question Answering Track, in: Text Retrieval Conference, volume
Special Publication 500-274, National Institute of Standards and Tech-
nology (NIST), 2001.

[10] P. Cimiano, M. Minock, Natural Language Interfaces: What Is the Prob-
lem? - A Data-Driven Quantitative Analysis, in: H. Horacek, E. Métais,
R. Muñoz, M. Wolska (Eds.), Natural Language Processing and Infor-
mation Systems, 14th International Conference on Applications of Nat-
ural Language to Information Systems, NLDB 2009. Revised Papers,
volume 5723 of Lecture Notes in Computer Science, Springer, 2010, pp.
192–206.

[11] I. Dagan, O. Glickman, B. Magnini, The PASCAL Recognising Tex-
tual Entailment Challenge, in: J.Q. Candela, I. Dagan, B. Magnini,
F. d’Alché Buc (Eds.), Machine Learning Challenges, Evaluating Predic-
tive Uncertainty, Visual Object Classification and Recognizing Textual
Entailment, First PASCAL Machine Learning Challenges Workshop,
Revised Selected Papers, volume 3944 of Lecture Notes in Computer
Science, Springer, 2005.

[12] D. Damljanovic, M. Agatonovic, H. Cunningham, FREyA: An Inter-
active Way of Querying Linked Data Using Natural Language, in:
R. Garcia-Castro, D. Fensel, G. Antoniou (Eds.), The Semantic Web:
ESWC 2011 Workshops, Revised Selected Papers, volume 7117 of Lec-
ture Notes in Computer Science, Springer, 2012, pp. 125–138.

47

[13] S. Dumais, M. Banko, E. Brill, J. Lin, A. Ng, Web Question Answer-
ing: Is More Always Better?, in: Proceedings of the 25th ACM SIGIR
Conference, SIGIR ’02, ACM, New York, NY, USA, 2002, pp. 291–298.

[14] M. Ernandes, G. Angelini, M. Gori, WebCrow: A Web-Based System
for Crossword Solving, in: M.M. Veloso, S. Kambhampati (Eds.), AAAI,
AAAI Press / The MIT Press, 2005, pp. 1412–1417.

[15] A. Fader, L. Zettlemoyer, O. Etzioni, Open Question Answering Over
Curated and Extracted Knowledge Bases, in: S.A. Macskassy, C. Per-
lich, J. Leskovec, W. Wang, R. Ghani (Eds.), The 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD 2014, ACM, 2014, pp. 1156–1165.

[16] D. Ferrucci, A. Levas, S. Bagchi, D. Gondek, E.T. Mueller, Watson:
Beyond Jeopardy!, Artificial Intelligence (2013) 93–105.

[17] D.A. Ferrucci, E.W. Brown, J. Chu-Carroll, J. Fan, D. Gondek,
A. Kalyanpur, A. Lally, J.W. Murdock, E. Nyberg, J.M. Prager,
N. Schlaefer, C.A. Welty, Building Watson: An Overview of the DeepQA
Project, AI Magazine 31 (2010) 59–79.

[18] E. Gabrilovich, S. Markovitch, Computing Semantic Relatedness Using
Wikipedia-based Explicit Semantic Analysis, in: M.M. Veloso (Ed.),
IJCAI 2007, Proceedings of the 20th International Joint Conference on
Artificial Intelligence, Hyderabad, India, January 6-12, 2007, Morgan
Kaufmann, 2007, pp. 1606–1611.

[19] I. Glöckner, University of Hagen at QA@CLEF 2008: Answer Validation
Exercise, in: Working Notes of the CLEF 2008 Workshop, pp. 17–19.

[20] S.M. Harabagiu, S. Maiorano, Finding Answers in Large Collections of
Texts: Paragraph Indexing + Abductive Inference, in: Proceedings of
the AAAI Fall Symposium on Question Answering, AAAI, 1999, pp.
63–71.

[21] S.M. Harabagiu, D.I. Moldovan, M. Paşca, R. Mihalcea, M. Surdeanu,
R.C. Bunescu, R. Girju, V. Rus, P. Morarescu, FALCON: Boosting
Knowledge for Answer Engines, in: Text Retrieval Conference, volume
Special Publication 500-249, National Institute of Standards and Tech-
nology (NIST), 2000, pp. 479–488.

48

[22] S.M. Harabagiu, M. Paşca, S.J. Maiorano, Experiments with Open-
domain Textual Question Answering, in: Proceedings of the 18th confer-
ence on Computational linguistics - Volume 1, COLING ’00, Association
for Computational Linguistics, Stroudsburg, PA, USA, 2000, pp. 292–
298.

[23] E.H. Hovy, L. Gerber, U. Hermjakob, M. Junk, C.Y. Lin, Question An-
swering in Webclopedia, in: Text Retrieval Conference, volume Special
Publication 500-249, National Institute of Standards and Technology
(NIST), 2000, pp. 655–664.

[24] S.K. Lam, D.M. Pennock, D. Cosley, S. Lawrence, 1 Billion Pages =
1 Million Dollars? Mining the Web to Play ”Who Wants to be a Mil-
lionaire?”, in: C. Meek, U. Kjærulff (Eds.), Proceedings of the 19th
Conference in Uncertainty in Artificial Intelligence, Morgan Kaufmann,
2003, pp. 337–345.

[25] J.J. Lin, An Exploration of the Principles Underlying Redundancy-based
Factoid Question Answering, ACM Transaction on Information Systems
25 (2007).

[26] M.L. Littman, Review: Computer Language Games, in: T.A. Marsland,
I. Frank (Eds.), Computers and Games, 2nd Int.Conf., Revised Papers,
volume 2063 of Lecture Notes in Computer Science, Springer, 2000, pp.
396–404.

[27] M.L. Littman, G.A. Keim, N. Shazeer, A Probabilistic Approach to
Solving Crossword Puzzles, Artificial Intelligence 134 (2002) 23–55.

[28] T. Liu, Learning to Rank for Information Retrieval, Springer, 2011.

[29] V. Lopez, M. Fernández, E. Motta, N. Stieler, PowerAqua: Supporting
Users in Querying and Exploring the Semantic Web, Semantic Web 3
(2012) 249–265.

[30] V. Lopez, C. Unger, P. Cimiano, E. Motta, Evaluating Question An-
swering Over Linked Data, Journal of Web Semantics 21 (2013) 3–13.

[31] B. Magnini, M. Negri, R. Prevete, H. Tanev, Is It the Right Answer?
Exploiting Web Redundancy for Answer Validation, in: Proceedings of

49

the 40th Annual Meeting of the Association for Computational Linguis-
tics, ACL, 2002, pp. 425–432.

[32] C.D. Manning, P. Raghavan, H. Schtze, Introduction to Information
Retrieval, Cambridge University Press, New York, NY, USA, 2008.

[33] M. Maybury, O. Stock, W. Wahlster, Intelligent Interactive Entertain-
ment Grand Challenges, IEEE Intelligent Systems 21 (2006) 14–18.

[34] P. Molino, P. Basile, QuestionCube: a Framework for Question Answer-
ing, in: G. Amati, C. Carpineto, G. Semeraro (Eds.), Proceedings of
the 3rd Italian Information Retrieval (IIR) Workshop, Bari, Italy, Jan-
uary 26-27, 2012, volume 835 of CEUR Workshop Proceedings, CEUR-
WS.org, 2012, pp. 167–178.

[35] P. Molino, P. Basile, A. Caputo, P. Lops, G. Semeraro, Exploiting Dis-
tributional Semantic Models in Question Answering, in: IEEE Interna-
tional Conference on Semantic Computing, IEEE, 2012, pp. 146–153.

[36] P. Molino, P. Basile, C. Santoro, P. Lops, M. de Gemmis, G. Semeraro, A
Virtual Player for “Who wants to be a Millionaire?” based on Question
Answering, in: M. Baldoni, C. Baroglio, G. Boella, R. Micalizio (Eds.),
AI*IA 2013: Advances in Artificial Intelligence - XIIIth International
Conference of the Italian Association for Artificial Intelligence, volume
8249 of Lecture Notes in Computer Science, Springer, 2013, pp. 205–216.

[37] C. Monz, Minimal Span Weighting Retrieval for Question Answering,
in: R. Gaizauskas, M. Greenwood, M. Hepple (Eds.), Proceedings of the
SIGIR 2004 Workshop on Information Retrieval for Question Answering,
pp. 23–30.

[38] M. Paşca, Open-domain question answering from large text collections,
Studies in computational linguistics, CSLI Publications, 2003.

[39] A. Peñas, E.H. Hovy, P. Forner, Á. Rodrigo, R.F.E. Sutcliffe,
R. Morante, QA4MRE 2011-2013: Overview of Question Answering
for Machine Reading Evaluation, in: P. Forner, H. Müller, R. Paredes,
P. Rosso, B. Stein (Eds.), Information Access Evaluation. Multilingual-
ity, Multimodality, and Visualization - 4th International Conference of
the CLEF Initiative, CLEF 2013, volume 8138 of Lecture Notes in Com-
puter Science, Springer, 2013, pp. 303–320.

50

[40] F. Perea, J. Puerto, Dynamic Programming Analysis of the TV Game
”Who Wants to Be a Millionaire?”, European Journal of Operational
Research 183 (2007) 805–811.

[41] S. Robertson, H. Zaragoza, The Probabilistic Relevance Framework:
BM25 and Beyond, Foundation and Trends in Information Retrieval
3 (2009) 333–389.

[42] J. Rocchio, Relevance Feedback Information Retrieval, in: G. Salton
(Ed.), The SMART Retrieval System - Experiments in Automated Doc-
ument Processing, Prentice-Hall, Englewood Cliffs, NJ, 1971, pp. 313–
323.

[43] Á. Rodrigo, A. Peñas, F. Verdejo, UNED at Answer Validation Exer-
cise 2007, in: C. Peters, V. Jijkoun, T. Mandl, H. Müller, D.W. Oard,
A. Peñas, V. Petras, D. Santos (Eds.), Advances in Multilingual and
Multimodal Information Retrieval, 8th Workshop of the Cross-Language
Evaluation Forum, CLEF 2007, Revised Selected Papers, volume 5152
of Lecture Notes in Computer Science, Springer, 2008, pp. 404–409.

[44] Á. Rodrigo, A. Peñas, F. Verdejo, Overview of the answer validation
exercise 2008, in: C. Peters, T. Deselaers, N. Ferro, J. Gonzalo, G.J.F.
Jones, M. Kurimo, T. Mandl, A. Peñas, V. Petras (Eds.), Evaluating
Systems for Multilingual and Multimodal Information Access, 9th Work-
shop of the Cross-Language Evaluation Forum, CLEF 2008, Revised
Selected Papers, volume 5706 of Lecture Notes in Computer Science,
Springer, 2009, pp. 296–313.

[45] S. Royce, B. Straits, Approaches to Social Research, 3rd edition, Oxford
University Press, New York, 1999.

[46] M. Sahlgren, An Introduction to Random Indexing, in: Methods and
Applications of Semantic Indexing Workshop at the 7th International
Conference on Terminology and Knowledge Engineering, 2005.

[47] G. Semeraro, M. de Gemmis, P. Lops, P. Basile, An Artificial Player for
a Language Game, IEEE Intelligent Systems 27 (2012) 36–43.

[48] J.A. Shaw, E.A. Fox, Combination of Multiple Searches, in: Proceedings
of the Second Text REtrieval Conference (TREC-2), volume Special

51

Publication 500-215, National Institute of Standards and Technology
(NIST), 1994, pp. 243–252.

[49] A. Singhal, C. Buckley, M. Mitra, Pivoted Document Length Normal-
ization, in: Proceedings of the 19th ACM SIGIR Conference, SIGIR ’96,
ACM, New York, NY, USA, 1996, pp. 21–29.

[50] P. Smolensky, Tensor Product Variable Binding and the Representation
of Symbolic Structures in Connectionist Systems, Artificial Intelligence
46 (1990) 159–216.

52

