
Incorporating the Structure of the Belief State in
End-to-End Task-Oriented Dialogue Systems

Lei Shu∗1, Piero Molino2, Mahdi Namazifar3, Bing Liu1, Hu Xu1, Huaixiu Zheng3, and Gokhan Tur3

1University of Illinois at Chicago
2Uber AI Labs

3Uber Technologies Inc.
1{lshu3, liub, hxu48}@uic.edu

2piero@uber.com
3{mahdin, huaixiu.zheng, gokhan}@uber.com

Abstract

End-to-end trainable networks try to overcome error propagation, lack of general-
ization and overall brittleness of traditional modularized task-oriented dialogue-
system architectures. Most proposed models expand on the sequence-to-sequence
architecture. Some of them don’t track belief state, which makes it difficult to
interact with ever-changing knowledge bases, while the ones that explicitly track
the belief state do it with classifiers. The use of classifiers suffers from the out-
of-vocabulary words problem, making these models hard to use in real-world
applications with ever-changing knowledge bases. We propose Structured Belief
Copy Network (SBCN), a novel end-to-end trainable architecture that allows for in-
teraction with external symbolic knowledge bases and solves the out-of-vocabulary
problem at the same time. It explicitly uses the structure of the belief state in its
architecture by using different sequential decoders with a copy mechanism for the
different informable slots and a multi-label decoder for the requestable slots, and
this provides better inductive bias. Through empirical results we show that SBCN
achieves state-of-the-art results on dialogue datasets while providing a practical
architecture that can be used in real-world applications.

1 Introduction

Traditional task-oriented dialogue systems take user’s utterances as input and output the responses.
Their architecture is a pipeline of functional modules: automatic speech recognition, natural language
understanding, dialogue state tracking, dialogue policy engine, natural language generation and text-
to-speech. Each module is learned separately and they are connected at prediction time by feeding the
output of one module as input to the following one. This kind of architecture, although effective in
dividing a complex problem into manageable sub-problems, suffers from error propagation throughout
the pipeline. At the same time, it only partially accounts for uncertainty in the predictions of each
module and requires considerable engineering effort, with cascading updates, when deployed in
production. Finally, collecting supervision for training all the modules is expensive, so most dialogue
datasets are relatively small in size, making it harder to train models that generalize well on unseen
data.

To tackle these problems, recently end-to-end task-oriented dialogue systems have been pro-
posed [13, 24, 14, 11, 12, 4, 3, 23, 19, among others]. Those systems train one whole text-in-text-out

∗Work mostly performed as an intern at Uber AI Labs

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

Table 1: Dialogue Example

user Is there a cheap place in the north part of town?
agent There are two restaurants that meet your specification. One is Italian and the other is Indian.
delexicalization There are two restaurants that meet your specification. One is food_slot and the other is food_slot.
informable slot price=cheap, area=north
requestable slot
response slot food_slot
user Italian, please. Can you give me the address?
agent Da Vinci pizzeria is in the north part of town their address is 20 Milton Road Chesterton.
delexicalization name_slot is in the north part of town and their address is address_slot.
informable Slot price=cheap, area=north, food=italian
requestable slot address
response slot name_slot, address_slot
user What is the phone number please?
agent da vinci pizzeria’s phone number is 01223351707.
delexicalization name_slot ’s phone number is phone_slot.
informable slot price=cheap, area=north, food=italian
requestable slot phone
response slot name_slot, phone_slot

model which reads user’s utterances and generates responses. The Sequence-to-sequence (Seq2Seq)
architecture [21] is also utilized as it fits the problem formulation and has been shown to have
competitive performance on the language understanding and generation. However, vanilla Seq2Seq
lacks the ability of incorporating external knowledge sources and managing dialogue history, which
makes it more suitable for chit-chat dialogue than for task-oriented dialogue.

In order to adapt Seq2Seq to task-oriented dialogue and mitigate its shortcomings, several ar-
chitectures have been proposed [23, 13, 12, 11, 6, 7] that are end-to-end trainable while keep-
ing all functional modules. In most dialogue systems with belief state tracking, the belief state
is defined in terms of informable slot values, the values the user informs the system about (e.g.
informable = {price = cheap, food = italian} if they want to book a cheap Italian restaurant),
and requestable slots, the slots the user wants to know about (e.g. requestable = {address, phone}
if they want to know the address and the phone number of the restaurant they are booking). In partic-
ular, in [9] the authors add belief state tracking to the Seq2Seq architecture. Their model represents
belief states as sequences of informable slot values and requestable slots names and encodes and
decodes them with CopyNets [8]. This approach has the advantage of solving the out-of-vocabulary
words problem, but the lack of structure in the way belief states are encoded and decoded both
introduces unwanted dependencies between slot values and makes it hard to identify informable slot
value assignments, making it impossible, for instance, to have two slots with overlapping value sets.

We propose Structured Belief Copy Network (SBCN) as a way to introduce a more structured
architecture for performing belief state decoding that provides better inductive bias, thus making
training easier. In our proposal, each slot has its own decoder that generates or copies the value of
informable slots, as this allows for both out-of-vocabulary values and multi-word expressions like
in [9], but also univocally identifies the value of each slot. As for requestable slots, the decoder is
a multi-label classifier that performs a binary classification for each slot. As the slots that appear
in the response may be different from the ones the user requested, we add a response slot binary
classifier that predicts the chances of each slot appear in the response. This architecture achieves
state-of-the-art results on the Cambridge Restaurant dataset [23] without the need for fine tuning
through reinforcement learning, suggesting that injecting this form of structured architectural bias in
the model strikes a better balance between flexibility and structure.

2 Related Work

End-to-end task-oriented dialogue systems is a novel yet vibrant research area [13, 24, 14, 11, 12, 4, 3,
among others]. Our work is closely related to task-oriented dialogue systems that extend the Seq2Seq
architecture [6, 7]. In these works, the architecture contains a sequential encoder for user utterances
and a sequential decoder for response generation, but no belief tracking is explicitly performed.
Conversely, in this work we explicitly include belief tracking inside the model architecture. On
the other hand, these works incorporate external knowledge bases by encoding them in key-value
pairs of learned representations and then query these pairs using an attention mechanism [1, 15]. In

2

particular, in [7] the authors adopt Memory Networks [20] to memorize the retrieved knowledge
base entities and words appearing in dialogue history. This means that the training and inference
of the model scales at least linearly with the size of the knowledge base and implies that the model
needs to be retrained at each update of the knowledge base, both of which are issues that make these
approaches less practical in real-world applications. In [6] the authors adopt a copy mechanism that
allows copying retrieved record information to the generated response, which alleviates Seq2Seq’s
problem of having to generate the lexicalized requested slot values of the retrieved entities. The fact
that our approach explicitly tracks the belief state makes it possible for us to query the knowledge
base symbolically and to perform de-lexicalized response generation, as we substitute de-lexicalized
slot names in the generated response with the values in the knowledge base query result.

Our work is also akin to modularly connected end-to-end trainable networks [23, 22, 13, 12, 11].
[23] includes belief state tracking, but has two phases in training: the first phase uses belief state
supervision and then the second phase uses response generation supervision. [22] adds a policy
network using latent representations to [23] so that the dialogue system can be continuously improved
through reinforcement learning after the model is optimized with the original training data. These
methods utilize classification as a way to decode the belief state, which makes them suffer from the
out-of-vocabulary words problem, as users may mention values for the informable slots which have
never appeared in training dataset. Furthermore, it cannot deal with growing knowledge bases, as if a
new value is added to any of the slots a new class has to be added to the belief state classifier. Our
choice of generating and copying values of the informable slots through a CopyNet [8] addresses
these issues. Another main difference in our work is the presence of a multi-label classifier for the
response slot that predicts the probability of each slot appearing in the final response. The main
advantage of this classifier is that the slots present in the de-lexicalized response are not always the
only ones requested by the user, so directly predicting which ones will appear better informs the copy
mechanism of the response decoder.

Finally, in [9] the authors adopt a CopyNet for decoding the belief state as well as the response. This
approach has the advantage of solving several problems such as the presence of out-of-vocabulary
words in slots values and deals naturally with multi-word phrases. On the other hand, the architecture
has also some downsides. Keeping track of the informable slot values without an explicit assignment
to a specific informable slot makes it difficult to use this approach when different slots may have
overlapping sets of values, e.g. departure and destination airport in a travel booking system. Moreover,
the fact that the order of the sequence in which both informable slot values and requestable slots are
encoded and decoded is arbitrary suggests that the sequential architecture adopted may not give the
right inductive bias. Our proposed method solves those problems by introducing structure in the
architecture used to decode the belief state, using slot-specific CopyNets for informable slots and
multi-label classification for requestable slots.

3 Methodology

We name our model Structured Belief Copy Network (SBCN) as we introduce a structured architec-
tural bias in the belief state tracking. Our basic assumption is that dialogues have the markov property:
current-turn decisions (predicted new belief state and generated agent response) are independent of
history given the previous-turn agent response and belief state. The previous-turn agent response
and belief state contains all the information about the past needed to generate an answer. The
exposition will use a prototypical Cambridge Restaurant dataset dialogue turn as a running example
to contextualize our architectural decisions.

The overall architecture contains five components as shown in Figure 1: an input encoder, a be-
lief state tracker (informable slot values decoder and requestable slot binary classifier), a knowl-
edge base query component, a response slot binary classifier and a response decoder. The in-
put encoder encodes the concatenation of the previous-turn tokenized agent response At−1, the
previous-turn belief state Bt−1 and the current-turn tokenized user utterance Ut. The belief state
is provided as a sequence of informable slot name tokens with their respective value and re-
questable slot names that are requested by the user. For instance the state {price = cheap, area =
north, food = italian; address = 1, phone = 1, postcode = 0} is encoded as the sequence
〈cheap, endprice, north, endarea, italian, endfood, address, phone, endbelief 〉where end∗ is a to-
ken that denotes the end of the sequence contaning the value of an informable slot and endbelief
denotes the end of the seuqnce representing the belief state. The last hidden state of the encoder serves

3

Input Encoder Agent Response Decoder

Informable Slot Values Decoder Requestable Slots Decoder Response Slots Decoder Word Copy Distribution

Knowledge Base Query

Knowledge
Base

0 1 0 0 0

GRUH GRUH GRUH GRUH GRUH GRUH GRUH

What cusine do you prefer?
END_A

cheap END_price
north END_area

END_food END_B
I like italian. what is

the address? END_U

At-1 Bt-1 Ut

GRUA GRUA GRUA

At

GRUI GRUI

The address of name_slot is
address_slot. END_A

food italian

italian END_food

GRUI GRUI

price cheap

cheap END_price

GRUI GRUI

area north

north END_area

GRUR

name

0

GRUR

address

1

GRUR

food

0

???

GRUS

name_slot

1

GRUS

address_slot

1

GRUS

food_slot

0

?

ita
lia

n

ch
ea

p
no

rth

na
m

e

ad
dr

es
s

ad
dr

es
s_

slo
t

?

na
m

e_
slo

t
fo

odGenerated
Informable
Slot Values

Generated
Requestable

Slots

Generated
Response

Slots

START

Figure 1: SBCN architecture contains an input encoder (green), a belief state tracker (yellow for
the informable slot values, orange for the requestable slots), a knowledge base query component
(purple), a response slot classifier (red), a component that calculates word copy probability (grey)
and a response decoder (blue). Attention connections are not drawn for the sake of clarity.

as the initial hidden state of the belief state tracker and the response decoder. The belief state tracker
contains two modules: the informable slot value decoder and the requestable slot binary classifier.
The informable slot value decoder generates the constraints It that are used for performing a query
to the knowledge base, while the requestable slot binary classifier identifies the slots that the user
requested Rt. The belief state of the current-turn t is Bt = {It, Rt}. Given the constraints obtained
from the generated informable slot values It, the knowledge base query component performs a query
on the knowledge base and encodes the number of records returned in a one-hot vector dt. The
response slot binary classifier predicts which slots should appear in the agent response St. Finally,
the agent response decoder takes in the knowledge base output dt, a word copy probability vector Pc

computed from It, Rt, St together with an attention of the input encoder hidden states and the belief
decoders hidden states, for generating a response At. Both requestable slot and response slot binary
classifiers share weights across slots, making both them logically equivalent to multi-label classifiers.
In the rest of this section each component will be described in detail.

3.1 Input Encoder

The input encoder consists of an embedding layer followed by a recurrent layer with Gated Recurrent
Units (GRU) [5]. It maps the input At−1 ◦Bt−1 ◦ Ut (where ◦ denotes concatenation) to a sequence
of hidden vectors {hEi |i = 1, . . . , |At−1 ◦Bt−1 ◦ Ut|} so that hEi = GRUH(eAt−1◦Bt−1◦Ut) where
e is the embedding function that maps from words to vectors. Let hEl denote the last hidden state of
the encoder.

4

3.2 Informable Slot Value Decoder

The informable slot values are values provided by the user that constitute constraints used to search
for relevant entities in the knowledge base. For instance, the user utterance “I’d like a cheap restaurant”
informs that the agent has to search in the knowledge base for all entities where {price = cheap}.
The informable slot value decoder is modeled as a multiple-head structure consisting of GRU recurrent
layers combined with a copy mechanism [8]. They are the cells shown in the yellow section of
Figure 1. The multiple-head structure is composed of tied-weights GRU generators that take the
same initial hidden state hEl , but have different start-of-sentence symbols for each different informable
slot value. This way, each informable slot value decoder is dependent on the encoder’s output, but it
is independent from the values generated for the other slots. For example, the value “italian” of the
food slot is independent from the generate price range “cheap”, while in above mentioned literature
the generated values of informable slots are often sequentially dependent. Let {kI} denote the set of
informable slots. The copy mechanism [8] helps the decoder in generating words that appeared in the
input encoder. Words can be copied from At−1 ◦Bt−1 ◦ Ut. The probability of the jth word P (yk

I

j)

is calculated as follows: (1) calculate the copy score φc(yk
I

j) and generation score φg(yk
I

j) based on
the hidden state hk

I

j , (2) sum the two scores and obtain probabilities through a softmax:

ck
I

j = Attn(hk
I

j−1, {hEi }),

hk
I

j = GRUI

(
(ck

I

j ◦ ey
kI

j), hk
I

j−1

)
,

φg(y
kI

j) =WKI

g · hk
I

j ,

φc(y
kI

j) = tanh(WKI

c · hy
kI

j) · hk
I

j , yk
I

j ∈ At−1 ∪Bt−1 ∪ Ut,

P (yk
I

j |yk
I

j−1, h
kI

j−1) = softmax
(
φc(y

kI

j) + φg(y
kI

j)
)
,

(1)

where, for each informable slot kI , yk
I

0 = kI and hk
I

0 = hEl , ey
kI

j is the embedding of the current
input word (the one generated at the previous step), and WKI

g and WKI

c are learned weight matrices.
Note that we follow [8] and [1] for our copy mechanism and attention mechanism implementation
respectively.

Let z denote the ground truth label. The loss for the informable slot values decoder is calculated as as
follows where Y KI

is the sequence of informable slot value decoder predictions:

LI = − 1

|{kI}|
1

|Y kI |
∑
kI

∑
j

logP (yk
I

j = zk
I

j |yk
I

j−1, h
kI

j−1). (2)

3.3 Requestable Slot Binary Classifier

The requestable slots are the attributes of knowledge base entries that are explicitly requested by
the user. For instance the user utterance “What’s the restaurant address and telephone number?” is
requesting for {address, telephone} slots of a restaurant.

A binary classifier is used for deciding whether the user requested each slot or not, performing a
multi-label classification. Let {kR} denote the set of requestable slots. A one-step GRU is used to
perform the classification. Given the initial state hEl and the embedding vector ek

R

of one requestable
slot kR, it is used to pay attention to the input encoder hidden vectors to compute a context vector
ck

R

. We use the attention mechanism described in [16]. The concatenation of ck
R

and ek
R

is passed
as input and hEl as initial state to the GRU. Finally, a sigmoid non-linearity is applied to the product

5

of a weight vector WR
y and the output of the GRU hk

R

to obtain a probability yk
R

, the probability of
the slot being requested by the user.

ck
R

= Attn(hEl , {hEi }),

hk
R

= GRUR

(
(ck

R

◦ ek
R

), hEl

)
,

yk
R

= σ(WR
y · hk

R

).

(3)

The loss function for all requestable slot binary classifiers is:

LR = − 1

|{kR}|
∑
kR

zk
R

log(yk
R

) + (1− zk
R

) log(1− yk
R

). (4)

3.4 Knowledge Base Query

The generated informable slot values It = {Y kI} are used as constraints of the symbolic knowledge
base query. The knowledge base is composed of one or more relational tables and each entity is a
tuple in one table. In the restaurant booking domain there is only one table containing information
about restaurant. The query is performed to select a subset of the entities that satisfy those constraints.
For instance, if the informable slots are {price = cheap, area = north}, all the restaurants that
have attributes of those fields equal to those values will be returned. The output of this component,
one-hot vector dt, indicates the number of records in the knowledge base that satisfy the constraints.
dt is a five-dimensional one-hot vector, where the first four dimensions represent integers from 0 to 3
and the last dimension represents 4 or more results and it is later used to inform the response slot
binary classifier and the agent response decoder.

3.5 Response Slot Binary Classifier

The response slots are the slots that are actually used in the de-lexicalized agent response. When the
response is presented to the user, they are replaced by actual values of the database entries. They
are dependent on the slots that were requested in the user utterance as well as the results obtained
from the knowledge base query. For instance, the user utterance “What’s the address?” will map to
the requestable slot “address”, while the agent may generate the response “name_slot is located in
address_slot in the area_slot part of town” An example of how the results obtained from querying the
knowledge base can impact the response slots is when multiple entities are returned: the response
may contains several “name_slot” and “food_slot”.

The response slot binary classifier is similar to the requestable slot binary classifier. The response
slots {kS} map one-to-one to the requestable slots {kR}, e.g. “address_slot” maps to “address”. The
initial state of each response slot decoder is the last hidden state of the requestable slot decoder it
maps to. In this case, the context vector ck

S

is obtained by paying attention to all hidden vectors
in the informable slot value decoders and requestable slots classifiers. Then, the concatenation of
the context vector ck

S

, the embedding vector of the response slot ek
S

and the knowledge base query
vector dt are used as input to a one-step GRU. Finally, a sigmoid non linearity is applied to the
product of a weight vector WS

y and the output of the GRU hk
S

to obtain a probability yk
S

for each
slot to appear in the answer.

ck
S

= Attn(hk
R

, {hk
I

i |kI ∈ KI , i ≤ |Y kI

|} ∪ {hk
R

|kR ∈ KR}),

hk
S

= GRUS

(
(ck

S

◦ ek
S

◦ dt), hk
R
)
,

yk
S

= σ(WS
y · hk

S

).

(5)

6

The loss function for all response slot binary classifiers is:

LS = − 1

|{kS}|
∑
kS

zk
S

log(yk
S

) + (1− zk
S

) log(1− yk
S

). (6)

3.6 Word Copy Probability and Agent Response Decoder

To allow the copy mechanism of the agent response decoder to consider the outputs of the in-
formable slot values, requestable slots and response slots decoders, a vector of independent word
copy probabilities PC is constructed as follows:

PC(w) =


yk

R

, if w = kR,

yk
S

, if w = kS ,

1, if w ∈ It,
0, otherwise,

(7)

where, if a word w is a requestable slot or a response slot, the probability is equal to their binary
classifier output; if a word appears in the generated informable slot values, its probability is equal to 1;
for the other words in the vocabulary the probability is equal to 0. This vector is used in conjunction
with agent response decoder prediction probability to generate the response.

The agent response decoder is responsible for generating the final de-lexicalized agent response to
be returned to the user. To this end, the response slots are substituted with the values of the results
obtained by querying the knowledge base before the response is returned. Note that this component
jointly models the policy engine and natural language generation in a conventional modular dialogue
system [23]. The actions taken by the policy engine are hence latent depending on the belief state
and KB output. This is in contrast to chit-chat systems where there is no action. However, similar to
modular systems, the responses generated according to policy actions are usually either information
bearing or requesting for more information from the user.

Like the informable slot value decoder, the agent response decoder also uses a copy mechanism,
so it has a copy probability and generation probability. Consider the generation of the jth word, its
generation score φg is calculated as:

cA
E

j = Attn(hAj−1, {hEi }),

cA
B

j = Attn(hAj−1, {hk
I

i |kI ∈ KI , i ≤ |Y kI

|} ∪ {hk
R

|kR ∈ KR}) ∪ {hk
S

|kS ∈ KS}),

hAj = GRUA

(
(cA

E

j ◦ cA
B

j ◦ eAj ◦ dt), hAj−1
)
,

φg(y
A
j) =WA

g · hAj ,

(8)

where cA
E

j is a context vector obtained by attending to the hidden vectors of the input encoder, cA
B

j
is a context vector obtained by attending to all hidden vectors of informable slot value decoder,
requestable slot classifier and response slot classifier, and WA

g is a learned weight matrix. The
concatenation of the two context vectors cA

E

j and cA
B

j , the embedding vector eAj of the previous
generated word and the knowledge base query output vector dt is used as input to a GRU. Note that
the initial hidden state is hA0 = hEl . The copy score φc is calculated as:

φc(y
A
j) =

{
PC(yAj) · tanh(WA

c · hy
A
j) · hAj , if yAj ∈ It ∪KR ∪KS ,

PC(yAj), otherwise,
(9)

where WA
c is a learned weight matrix. The final probability is the softmax of the sum of generation

score and copy score:

P (yAj |yAj−1, hAj−1) = softmax(φg(yAj) + φc(y
A
j)). (10)

7

Let z denote the ground truth de-lexicalized agent response. The loss for the agent response decoder
is calculated as follows where Y A is the sequence of agent response decoder prediction:

LA = − 1

|Y A|
∑
j

logP (yAj = zAj |yAj−1, hAj−1). (11)

As the agent response is de-lexicalized, it will contain slot names. They will be resolved against
the results returned by the knowledge base. For instance if the generated answer is “The address
of name_slot is address_slot” and the returned tuple from the query to the knowledge base is
{name = DaV inci, address = 123BakerStreet, area = north, ...}, the final resolved answer
will be: “The address of DaVinci is 123 Baker Street”.

3.7 Loss Function

The loss function of the whole network is the sum of the four losses described so far for the
informable slot values LI , requestable slot LR, response slot LS and answer decoders LA, weighted
by α hyperparameters:

L = αILI + αRLR + αSLS + αALA. (12)

The loss is optimized in end-to-end fashion, with all modules trained simultaneously with loss
gradients back-propagated to their weights. In order to do so, ground truth results from database
queries are also provided to the model in order to compute the dt, while at prediction time results
obtained by using the generated informable slot values It are used.

4 Experiment

4.1 Setup

We tested the SBCN on Cambridge Restaurant dataset (CamRest) [23] which is composed of 408,
136 and 136 dialogues for training, validation and testing respectively and contains 99 unique records
in the knowledge base.

We use NLTK [2] to tokenize each sentence. The user utterances are exactly the original texts, while
all agent response texts are de-lexicalized as described in [9]. In the CamRest dataset, annotations
about the informable slot values and requestable slots for each turn are provided. We obtain the
labels for the response slot decoder from the de-lexicalized response texts. For embedding words,
300-dimensional GloVe embeddings [18] trained on 840B words from Common Crawl are used. For
tokens not present in the GloVe set, they are initialized to be the average of all other embeddings plus
a small amount of random noise to make them different from each other, and they are updated during
the training.

We evaluate the performance in terms of belief state tracking, response language quality and task
completion. For belief state tracking we report precision, recall and F1 score of informable slot
values and requestable slots. BLEU [17] is applied on the generated agent responses for evaluating
language quality. For task completion evaluation, Entity Match Rate (EMR) [23] and Success F1

score (SuccF1) [9] are reported. EMR evaluates whether a system can correctly retrieve the user’s
indicated entity (record) from the knowledge base based on the generated constraints, so it can have
only a score of 0 or 1 for each dialogue. The SuccF1 score evaluates how a system responds to the
user’s requests at dialogue level. It is the F1 score of the response slots in the agent responses.

We optimize both training and model hyperparameters by running bayesian optimization over the
validation set EMR using skopt2. The model that performed the best on the validation set uses the
Adam optimizer [10] with a learning rate of 0.00025 for minimizing the loss in Equation 12. We
apply dropout with a rate of 0.45 after the embedding layer, the GRU layer and any linear layer. The
dimension of all hidden states is 128. Loss weights αI , αR, αS , αA are 1.5, 9.5, 8.5, 0.3 respectively.

We compare SBCN with the following four methods.

2https://scikit-optimize.github.io/

8

https://scikit-optimize.github.io/

Method Inf P Inf R Inf F1 Req P Req R Req F1 BLEU EMR SuccF1

NDM 0.998 0.961 0.979 0.987 0.938 0.962 0.212 0.904 0.832
LIDM - - - - - - 0.246 0.912 0.840
KVRN - - - - - - 0.134 - -
TSCP - - - - - - 0.253 0.927 0.854
TSCP† 0.970 0.971 0.971 0.983 0.935 0.959 0.237 0.915 0.826
TSCP+RL† 0.970 0.971 0.971 0.983 0.938 0.960 0.237 0.913 0.841
SBCN 0.982* 0.984* 0.983* 0.996* 0.952 0.974* 0.254* 0.933* 0.852*

Table 2: Comparison of SBCN perfromance with the baselines on the CamRest dataset. Inf:
Informable, Req: Requestable, P: Precision, R: Recall, SuccF1: Success F1 score, EMR: Entity
Match Rate. Results marked with † are computed using available code, all the other ones are reported
from the original papers. * indicates the result is statistically significant at the level of 0.05 comparing
to TSCP+RL†.

NDM [23] proposes a modularly-connected end-to-end trainable network. It is composed of an intent
network, a belief tracker, a knowledge base operator, a policy network and a response generation
module. It applies de-lexicalization on both user utterance and agent response.

LIDM [22] improves over NDM by employing a discrete latent variable to learn underlying dialogue
acts. This allows the system to be refined by reinforcement learning.

KVRN [6] adopts a copy-augmented Seq2Seq model for agent response generation and uses an
attention mechanism on the knowledge base. It does not perform belief state tracking.

TSCP [9] propose a two stage CopyNet which consists of one encoder and two copy-mechanism [8]
augmented decoders. The first decoder decodes the belief state, including informable slot values and
requestable slots. The second decoder generates the response based on the first decoder’s generated
belief state and the results of a knowledge base query. TSCP+RL includes further parameter tuning
with reinforcement learning. We were unable to replicate the results reported in the paper using the
provided code3, hyperparameter setting and random seed, so we report both the results from the paper
and the best of 5 runs on the code given different random seeds (marked with †).

4.2 Result Analysis

As the results in Table 2 show, SBCN performs better than the benchmarks on all the measures except
SuccF1, where it is still competitive. In particular, SBCN performs better than LIDM and NDM
on the belief tracking measures (Inf. and Req.): it is particularly interesting because those models
delexicalize both the user utterance and the agent response, which substantially helps the performance
on the informable slot, but assumes that perfect delexicalization is performed as a preprocessing step,
while SBCN does not require this additional step, making it more practical. SBCN also performs
better than both TSCP† and TSCP+RL†: the BLEU score is slightly better than the best TSCP†
one and the SuccF1 is slightly better than the best TSCP+RL†, but the biggest advantage is in the
EMR. This is not surprising given that the EMR is the metric we optimized the hyperaprameters for.
Finally, compared to the reported TSCP scores, both BLEU and SuccF1 are within 0.002, a negligible
difference, while SBCN outperforms TSCP on EMR.

5 Conclusion

In this paper, we propose Structured Belief Copy Network, a novel architecture for task-oriented
end-to-end dialogue. It explicitly uses the structure of the belief state for guiding the design of an
architecture that provides better inductive bias and addresses the limitations of previous works. In
particular, it naturally deals with the out-of-vocabulary problem by adopting a copy mechanism
and by predicting the belief state making it possible to query ever-changing knowledge bases,
both characteristics needed to make the use of the model practical in real world applications. The
experiment on the Cambridge Restaurant dataset suggests that this architecture is also competitive
with state-of-the-art models.

3https://github.com/WING-NUS/sequicity

9

https://github.com/WING-NUS/sequicity

References
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly

learning to align and translate. In International Conference on Learning Representations, San
Diego, California, USA, 2015.

[2] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python.
O’Reilly Media, Inc., 2009.

[3] Antoine Bordes, Y-Lan Boureau, and Jason Weston. Learning end-to-end goal-oriented dialog.
In International Conference on Learning Representations, Toulon, France, 2017.

[4] Paweł Budzianowski, Iñigo Casanueva, Bo-Hsiang Tseng, and Milica Gašić. Towards end-to-
end multi-domain dialogue modelling. Technical Report CUED/F-INFENG/TR.706, Cambridge
University, 2018.

[5] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. In EMNLP, pages 1724–1734. ACL, 2014.

[6] Mihail Eric, Lakshmi Krishnan, Francois Charette, and Christopher D. Manning. Key-value
retrieval networks for task-oriented dialogue. In SIGDIAL Conference, pages 37–49. Association
for Computational Linguistics, 2017.

[7] Pascale Fung, Chien-Sheng Wu, and Andrea Madotto. Mem2seq: Effectively incorporating
knowledge bases into end-to-end task-oriented dialog systems. In ACL (1), pages 1468–1478.
Association for Computational Linguistics, 2018.

[8] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. Incorporating copying mechanism in
sequence-to-sequence learning. In ACL (1). The Association for Computer Linguistics, 2016.

[9] Min-Yen Kan, Xiangnan He, Wenqiang Lei, Xisen Jin, Zhaochun Ren, and Dawei Yin. Sequicity:
Simplifying task-oriented dialogue systems with single sequence-to-sequence architectures. In
ACL (1), pages 1437–1447. Association for Computational Linguistics, 2018.

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, San Diego, California, USA, 2015.

[11] Xiujun Li, Sarah Panda, Jingjing Liu, and Jianfeng Gao. Microsoft dialogue challenge: Building
end-to-end task-completion dialogue systems. volume abs/1807.11125, 2018.

[12] Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth Shah, and Larry Heck. Dialogue learning
with human teaching and feedback in end-to-end trainable task-oriented dialogue systems. In
NAACL, 2018.

[13] Bng Liu and Ian Lane. End-to-end learning of task-oriented dialogs. In Proceedings of the
NAACL-HLT, 2018.

[14] Ryan Thomas Lowe, Nissan Pow, Iulian Vlad Serban, Laurent Charlin, Chia-Wei Liu, and
Joelle Pineau. Training end-to-end dialogue systems with the ubuntu dialogue corpus. Dialogue
and Discourse, 8(1):31–65, 2017.

[15] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. In EMNLP, pages 1412–1421. The Association for Computational
Linguistics, 2015.

[16] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. In EMNLP, pages 1412–1421. The Association for Computational
Linguistics, 2015.

[17] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In ACL, pages 311–318. ACL, 2002.

[18] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In EMNLP, pages 1532–1543. ACL, 2014.

10

[19] Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C. Courville, and Joelle Pineau.
Building end-to-end dialogue systems using generative hierarchical neural network models. In
AAAI, pages 3776–3784. AAAI Press, 2016.

[20] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory
networks. In NIPS, pages 2440–2448, 2015.

[21] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. In NIPS, pages 3104–3112, 2014.

[22] Tsung-Hsien Wen, Yishu Miao, Phil Blunsom, and Steve J. Young. Latent intention dialogue
models. In ICML, volume 70 of Proceedings of Machine Learning Research, pages 3732–3741.
PMLR, 2017.

[23] Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić, Milica Gasic, Lina M Rojas Barahona,
Pei-Hao Su, Stefan Ultes, and Steve Young. A network-based end-to-end trainable task-oriented
dialogue system. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 1, Long Papers, volume 1, pages 438–449.
ACL, 2017.

[24] Jason D. Williams, Kavosh Asadi, and Geoffrey Zweig. Hybrid code networks: practical and
efficient end-to-end dialog control with supervised and reinforcement learning. In ACL (1),
pages 665–677. Association for Computational Linguistics, 2017.

11

	Introduction
	Related Work
	Methodology
	Input Encoder
	Informable Slot Value Decoder
	Requestable Slot Binary Classifier
	Knowledge Base Query
	Response Slot Binary Classifier
	Word Copy Probability and Agent Response Decoder
	Loss Function

	Experiment
	Setup
	Result Analysis

	Conclusion

