
Exploiting Distributional Semantic Models in
Question Answering

Piero Molino∗† and Pierpaolo Basile∗† and Annalina Caputo∗ and Pasquale Lops∗ and Giovanni Semeraro∗

∗Dept. of Computer Science - University of Bari Aldo Moro
Via E. Orabona, 4 - 70125 Bari (ITALY)

Email: piero.molino@uniba.it,{basilepp,acaputo,lops,semeraro}@di.uniba.it

†QuestionCube s.r.l.
Via Zanardelli 47, 70125 Bari (ITALY)

Email: {piero.molino,pierpaolo.basile}@questioncube.com

Abstract—This paper investigates the role of Distributional
Semantic Models (DSMs) in Question Answering (QA), and
specifically in a QA system called QuestionCube. QuestionCube is
a framework for QA that combines several techniques to retrieve
passages containing the exact answers for natural language ques-
tions. It exploits Information Retrieval models to seek candidate
answers and Natural Language Processing algorithms for the
analysis of questions and candidate answers both in English and
Italian. The data source for the answer is an unstructured text
document collection stored in search indices.

In this paper we propose to exploit DSMs in the QuestionCube
framework. In DSMs words are represented as mathematical
points in a geometric space, also known as semantic space. Words
are similar if they are close in that space. Our idea is that
DSMs approaches can help to compute relatedness between users’
questions and candidate answers by exploiting paradigmatic
relations between words. Results of an experimental evaluation
carried out on CLEF2010 QA dataset, prove the effectiveness of
the proposed approach.

I. INTRODUCTION

Distributional Semantics Models (DSMs) represent word
meanings through linguistic contexts. The meaning of a word
can be inferred by the linguistic contexts in which the word
occurs. The philosophical insight of distributional models can
be ascribed to Wittgenstein’s quote “the meaning of a word
is its use in the language” [1]. The idea behind DSMs can
be summarized as follows: if two words share the same
linguistic contexts they are somehow similar in the meaning.
For example, analyzing the sentences ”drink wine“ and ”drink
beer“, we can assume that the words ”wine“ and ”beer“ have
similar meaning. Using that assumption, the meaning of a
word can be expressed by the geometrical representation in
a semantic space. In this space a word is represented by
a vector whose dimensions correspond to linguistic contexts
surrounding the word. The word vector is built analyzing
(e.g. counting) the contexts in which the term occurs across
a corpus. Some definitions of contexts may be the set of co-
occurring words in a document, in a sentence or in a window
of surrounding terms.

Generally, semantic spaces do not require specific text
operations, only tokenization is needed, and they are cor-

pus/language independent. This has benefited their practical
use in many different tasks. The earliest and simplest formu-
lation of such a space has root in the Vector Space Model in
Information Retrieval (IR) [2]. Since then, several linguistic
and cognitive tasks have exploited semantic spaces, such
as synonym choice [3], semantic priming [3]–[5], automatic
construction of thesauri [6] and word sense induction [7].

This paper aims at exploiting DSMs for performing a task
to which they have never been applied before, i.e. Question
Answering (QA), exploring how to integrate them inside a
pre-existent QA system. Our insight is based on the ability of
these spaces to capture paradigmatic relations between words
which should result in a list of candidate answers related to
the user’s question.

Question Answering (QA) emerged in the last decade as
one of the most promising fields in Artificial Intelligence,
as highlighted by the organization of several competitions in
international conferences [8], [9], but the first studies can
be dated back to 1960s [10], [11]. In recent years some
enterprise applications have shown the potential of the state-of-
the-art technology, such as the IBM’s Watson/DeepQA system
[12], [13]. By exploiting techniques borrowed from IR and
Natural Language Processing (NLP), QA systems are able
to answer users’ questions expressed in natural language.
Differently from search engines, which return long lists of
full-text documents that users have to check in order to find
the information needed, QA systems are able to answer users’
questions with either directly the exact answer or with short
passages of text containing the exact answer.

In order to test the effectiveness of the DSMs for QA, we
rely on a pre-existent QA framework called QuestionCube
[14]. QuestionCube is a general framework for building QA
systems with focus on closed domains, but which can be
easily applied to open domains as well. QuestionCube exploits
NLP algorithms, for both English and Italian, in order to
analyze questions and documents with the purpose of allowing
candidate answers obtained from the retrieved documents to be
re-ranked by a pipeline of filters. These filters assign a score
to a candidate answer taking into account several linguistic

and semantic features.
Our strategy for exploiting DSMs consists in adding a new

filter to this pipeline, based on vector spaces built using DSMs.
In particular, we propose four types of spaces: a classical
Term-Term co-occurrence Matrix (TTM) used as baseline,
Latent Semantic Analysis (LSA) applied to TTM, Random
Indexing (RI) approach to reduce TTM dimension, and finally
an approach which combines LSA and RI. The filter will
assign a score based on the similarity between the question
and the candidate answers inside the DSMs.

The paper is structured as follows. Section II describes
how semantic spaces are built, while Section III provides a
generic overview of the QuestionCube architecture. Section IV
provides details about the integration of DSMs in the Ques-
tionCube framework. Results of the evaluation are reported in
Section V, while a brief overview of related work is reported
in Section VI. Conclusions close the paper.

II. DISTRIBUTIONAL SEMANTIC MODELS

Our DSMs are constructed over a co-occurrence matrix. The
linguistic context taken into account is a window w of co-
occurring terms. Given a reference corpus1 and its vocabulary
V , a n × n co-occurrence matrix is defined as the matrix
M = (mij) whose coefficients mij ∈ R are the number of
co-occurrences of the words ti and tj within a predetermined
distance w.

The term × term matrix M, based on simple word co-
occurrences, represents the simplest semantic space, called
Term-Term co-occurrence Matrix (TTM).

In literature, several methods to approximate the original
matrix by rank reduction have been proposed. The aim of
these methods varies from discovering high-order relations
between entries to improving efficiency by reducing its noise
and dimensionality. We exploit three methods for building our
semantic spaces: Latent Semantic Analysis (LSA), Random
Indexing (RI) and LSA over RI.

All these methods produce a new matrix M̂, which is a
n × k approximation of the co-occurrence matrix M with n
row vectors corresponding to vocabulary terms, while k is the
number of reduced dimensions.

A. Latent Semantic Analysis

Latent Semantic Analysis [15] is based on the Singular
Value Decomposition (SVD) of the original matrix M. M is
decomposed in the product of three matrices UΣV>, where
U and V are orthonormal matrices whose columns are the
right and left eigenvectors of the matrices M>M and MM>

respectively, while Σ is the diagonal matrix of the singular
values of M placed in decreasing order. SVD can be applied
to any rectangular matrix, and if r is the rank of M, then
the matrix M∗ = U∗Σ∗V>∗ of rank k � r, built choosing
the top k singular values, is the best rank k approximation of
M. SVD helps both to discover high-order relations between
terms and to reduce the sparsity of the original matrix.

1In our case the collection of documents indexed by the QA system.

Moreover, since the matrix MM> corresponds to all possible
combinations of any two terms, it is possible to compute the
similarity between two terms by exploiting the relation

MM> = UΣV>VΣ>U> = UΣΣ>U> = (UΣ)(UΣ)>

In the case of the k-approximation of M, the complexity of
the computation of the similarity between any two terms is
reduced.

B. Random Indexing
We exploit Random Indexing (RI), introduced by Kanerva

[16], for creating the DSM based on RI. This technique
allows us to build a semantic space with no need for matrix
factorization, because vectors are inferred using an incremental
strategy. Moreover, it allows to solve efficiently the problem
of reducing dimensions, which is one of the key features
used to uncover the “latent semantic dimensions” of a word
distribution.

RI is based on the concept of Random Projection accord-
ing to which randomly chosen high dimensional vectors are
“nearly orthogonal”.

Formally, given an n×m matrix M and an m× k matrix
R made up of m k-dimensional random vectors, we define a
new n× k matrix M′ as follows:

M′
n,k = Mn,mRm,k k << m (1)

The new matrix M′ has the property to preserve the
distance between points. This property is known as Johnson-
Lindenstrauss lemma [17]: if the distance between any two
points of M is d, then the distance dr between the corre-
sponding points in M′ will satisfy the property that dr = c ·d.
A proof of that property is reported in [18].

The product between M and R is not actually computed,
but it corresponds to building M′ incrementally, as follows:

1) Given a corpus, a random vector is assigned to each
term. The random vector is high-dimensional, sparse and
with very few elements with non-zero values {−1, 1},
which ensures that the resulting vectors are nearly or-
thogonal, and the structure of this vector follows the
hypothesis behind the concept of Random Projection.

2) The semantic vector of a term is given by sum-
ming the random vectors of terms co-occurring with
the target term in a predetermined context (docu-
ment/sentence/window).

C. Latent Semantic Analysis over Random Indexing
Computing LSA on the co-occurrence matrix M can be a

computationally expensive task, as the vocabulary V can reach
thousands of terms. Here we propose a simpler computation
based on the application of the SVD factorization to M′, the
reduced approximation of M produced by Random Indexing.
Sellberg and Jönsson [19] followed a similar approach for the
retrieval of similar FAQs in a QA system. Their experiments
showed that reducing the original matrix by RI resulted in a
drastic reduction of LSA computation time. The trade-off to
be paid was the slight worse performance, which were better
than TTM and RI anyway.

III. FRAMEWORK OVERVIEW

Document
Index

DocumentoDocumentoDocumentoDocumento
Document

Document
Document

Indexer

Document
Base

Indexing

Search

User Question
Question
Analysis Search Engines

Risposta
Risposta

Risposta
Answer

Filters

Passage Index

Passage
Base

Fig. 1. QuestionCube architecture overview

QuestionCube is a multilingual QA framework built using
NLP and IR techniques. The main aim of the QuestionCube
architecture, shown in Figure 1, is to create a QA system sim-
ply by the dynamic composition of framework components,
as suggested in [20].

Question Answering is a two steps process. At indexing
time, the system builds two different indexes for documents
and for passages contained in each document. At query time,
the user’s question is analyzed by a NLP pipeline. The result
of this pipeline is a text tagged with linguistic annotation
useful for passage re-ranking. The question is then passed to
the search engines. Then, the filter pipeline is responsible for
the filtering and scoring of the passages retrieved by search
engines. Finally, the ranked list of passages is presented to the
user.

A. Question Analysis

The macro-component of the question analysis consists of
a pipeline of NLP analyzers, a data-structure to represent
linguistic annotated text and the question classifier, as shown
in Figure 2. The NLP pipeline is easily configurable depending
on the application domain of the QA system.

NLP analyzers are provided for both English and Italian.
The stemmer is implemented by Snowball2 both for English
and Italian. The lemmatiser is realized by exploiting the
morpho-syntactic analyzer of WordNet API [21] for English,
while Morph-it [22] is exploited for Italian. Named En-
tity Recognition (NER) is performed by a machine learning
classifier based on Support Vector Machines [23] using an
open-source tool called YAMCHA [24]. The same tool is

2Available on-line: http://snowball.tartarus.org/

Question Analysis

User Question

Pipeline NLP

Search Engines

FiltersQuestion
Classifier

Text
Representation

Tagged
Representation

Tokeniser

StopWord Remover

Stemmer

Lemmatiser

Named Entity
Recogniser

Word Sense
Disambiguator

Chunker

Fig. 2. Question analysis macro-component

used for the chunker component. POS-tags and lemmas are
adopted as features for chunking and NER. The Word Sense
Disambiguation (WSD) is implemented by the UKB algorithm
[25], which is a graph-based technique based on a personalized
version of PageRank [26] over WordNet graph.

The output of the NLP analyzers is a set of tags that are
added to the text representation.

The annotated text representation of the question is used
by the question classifier. It exploits both a machine learning
approach (support Vector Machines) and hand-written rules.
For more details refer to [14].

The category is selected among those from the typology
proposed in [27], [28]. Categories are exploited by filters
in order to give higher scores to those candidate answers
containing Named Entities, in accordance with the question
category.

B. Search Engine

The search engine macro-component is designed to allow
the integration of several information retrieval strategies, and
thus the aggregation of their results, as shown in Figure 3.
Since the parallel searcher enables modularity, it is possible
to add an arbitrary number of different search engines. When
a new question comes, the parallel searcher calls each engine
and merges their outputs in a single list. The list contains
all the candidate answers collected from all the engines, each
one with a reference to the engines that retrieved it and the
score assigned by each engine. Each search engine has its own
query generation component, as the query syntax can change
among different engines. Moreover, each query generator can

Analysed
Question

Filters

Document
Index Passage Index

Search Engines

Query
Generator #1

Parallel
Searcher

Search Engine
#1

Query
Generator

Search Engine

Query
Generator #N

Search Engine
#N

Result merger

Fig. 3. Search engine macro-component

use different annotations: some use only tokens, lemmas or
stems, while other ones may use WordNet synsets to generate
the query representation. This approach makes the framework
highly modular and flexible and allows to add a new search
engine inside the framework with minimal effort. The main
goal of using more than one search engine is to rely on
different retrieval strategies in order to exploit different text
representations and retrieval models.

Document
Index

Passage Index

Searcher

Parallel
Searcher

Query
Generation

First Document
Search

Result Merger

Passage
Search

Query
Expansion

Second
Document

Search

Fig. 4. Single search engine

The process performed by each search engine is described in
Figure 4. Each query generator builds the query for its search
engine from the text representation provided by the parallel
engine. Moreover, the query generator may implement differ-
ent query-improvement techniques (such as relevance feedback

and query expansion). Hence, the search engine executes the
query to return the best scored documents. The passage index
is used to obtain passages from retrieved documents. These
passages are merged into one single list by an aggregation
component and then passed to the filters which score, sort and
filter them.

QuestionCube provides a search engine based on BM25
model [29] and another based on Apache Lucene3. The
query generation component for those searchers allows three
different query-improvement techniques:
• Query expansion through WordNet synonyms of synsets

found in the question;
• Kullback-Leibler Divergence, a statistical technique that

exploits the distribution of terms in the top-ranked docu-
ments [30], [31];

• Divergence From Randomness, a statistical technique that
weights the terms’ distribution with the Bose-Einstein
Bo1 weighting scheme [32].

It is important to underline that the WordNet-based query
expansion is used only if the question has been disambiguated.

C. Filters

Search Engines

Answers

Filters

Term Filter

Density Filter

Syntactic Filter Exact
Sequence Filter

N-gram Filter

Normalizer
Filter Top N Filter

Category Filter

Zero Filter

Question
Classifier

Tagged Question

Z-Score Filter

Fig. 5. Candidate answers filtering macro-component

This macro-component, sketched in Figure 5, contains all
passage filters. Such pipeline is modular, and new filters can
be added at any time.

A filter checks every input passage obtained from the search
engine, and assigns a score depending on the implemented
logic. Filters can exploit both information provided by the
text representation and the question category tag assigned by
the classifier.

Some filters do not assign scores, but only sort the passages
according to some score or rank threshold.

The filter composition in the pipeline is important to de-
termine the quality of results returned by the system, the

3Available at http://lucene.apache.org/

efficiency and the answering time. A description of each filter
logic is listed below:
• Zero Filter: removes from the list all those passages that,

at the moment of the analysis, have a score of 0;
• Top-N Filter: sorts and filters passages to the top N -

ranked ones on the basis of their current score;
• Terms filter: assigns a score to a passage based on the

frequency of occurring question terms;
• Exact Sequence Filter: assigns a score to a passage

based on the number of the longest overlapping sequence
of question terms found in the passage;

• Normalization Filter: assigns a score based on the pas-
sage length normalized by its overall score. Both a sim-
ple normalization filter (Byte-size Normalization, which
considers only the number of terms) and a filter based
on the Pivoted Normalized Document Length techniques
are implemented. More details about these techniques are
presented in [33], [34];

• N-grams Filter: assigns a score to a passage based on
the overlapping of n-grams between the question and the
passage (n is given as input to the filter);

• Density Filter: assigns a score to a passage based on
the distance of the question terms inside it. The closer
the question terms appear in the passage, the higher the
score. The density is calculated by a modified version of
the Minimal Span Weighting schema proposed by [35]:(

| q ∩ d |
1 + max(mms)−min(mms)

)
where q and d are the set of terms in the query and in
the document, respectively (specifically, the query is the
question and the document is the passage); max(mms)
and min(mms) are the initial and final location of the
sequence of document terms containing all the query
terms.

• Syntactic Filter: assigns a score to a passage based on
the Phrase Matching algorithm presented in [36]. The
algorithm takes into account the head of each phrase.
If the head is common to the two texts considered (in
this case the question and the passage), the maximal
overlapping length of each phrase is calculated.

• Category Filter: assigns a score to a passage based on a
list of pairs that link the question categories to typologies
of named entity: if, on the basis of the question category,
entities of the expected typology are found in the passage
this will get a positive score.

• Z-Score Filter: assigns a score to a passage based on
the Z-Score normalization [37] of scores assigned by the
search engines and the other filters.

• CombSum Filter: assigns a score to a passage summing
the scores assigned by the search engines and the other
filters [37] .

Terms and Density filters have an enhanced version which
adopts the combination of lemmas and PoS tags as features
instead of terms.

A boost factor can be assigned to each filter which intensi-
fies or decreases its strength.

IV. DSMS INTEGRATION INTO THE QUESTIONCUBE
FRAMEWORK

The idea behind the application of DSMs to the Question-
Cube framework is to build a new filter relying on our semantic
spaces, and add it to the filter pipeline as shown in Figure 5.
We call this component Distributional Filter, which aims at
computing the similarity between the user’s question and each
candidate answer.

In DSMs, given the vector representation of two words
u = (u1, u2, ..., un)

> and v = (v1, v2, ..., vn)
>, it is always

possible to compute their similarity as the cosine of the angle
between them:

cos(u,v) =

∑n
i=1 uivi√∑n

i=1 u
2
i

∑n
i=1 v

2
i

(2)

However, the user’s question and the candidate answer are
sentences composed by several terms, so in order to compute
the similarity between them we need a method to compose the
words occurring in these sentences. It is possible to combine
words through vector addition (+). This operator is similar to
the superposition defined in connectionist systems [38], and
corresponds to the point-wise sum of components:

p = u + v (3)

where pi = ui + vi
Addition is a commutative operator, which means that it

does not take into account any order or underlying structures
existing between words. In this first study, we do not exploit
more complex methods to combine word vectors.

Given a phrase or sentence p, we denote with p its vector
representation obtained applying addition operator (+) to the
vector representation of terms it is composed of. Further-
more, it is possible to compute the similarity between two
phrases/sentences exploiting the cosine similarity between
vectors (2).

Formally, if q = q1q2...qn and a = a1a2...am are the
question and the candidate answer respectively, we build two
vectors q and a which represent respectively the question and
the candidate answer in a semantic space. Vector representa-
tions for question and answer are built applying the addition
operator to the vector representation of words belonging to
them:

q = q1 + q2 + . . .+ qn

a = a1 + a2 . . .+ am
(4)

The similarity between q and a is computed as the cosine
similarity between them. This similarity is added as score to
the candidate answer

V. EVALUATION

The goal of the evaluation is twofold: (1) proving the
effectiveness of DSMs into our question answering system

and (2) providing a comparison between the several DSMs
adopted by the Distributional Filter.

The evaluation has been performed on the ResPubliQA 2010
Dataset adopted in the 2010 CLEF QA Competition [9]. The
dataset contains about 10,700 documents of the European
Union legislation and European Parliament transcriptions,
aligned in several languages including English and Italian,
with 200 questions.

The adopted metric is the accuracy a@n, calculated consid-
ering only the first n answers. If the correct answer occurs in
the top n retrieved answers, the question is marked as correctly
answered. In particular, we take into account several values of
n =1, 5, 10 and 30. Moreover, we adopt another metric, MRR,
that considers the rank of the correct answer. MRR is defined
as follows:

MRR =

∑N
i=1

1
ranki

N
(5)

where N is the number of questions and ranki is the rank of
the correct answer for the i− th question. The correct answer
receives a higher score if it occurs on the top of the global
rank.

The framework setup used for the evaluation adopts Lucene
as document searcher, and stemmer, lemmatizer, PoS tagger
and named entity recognition as NLP pipeline. The different
DSMs and the classic TTM have been used as filters alone,
which means no other filters are adopted in the filters pipeline,
and combined with the standard filter pipeline consisting
of the Simple Terms (ST), the Enhanced Terms (ET), the
Enhanced Density (ED) and the Exact Sequence (E) filters.
The combination consist in normalizing the scores with the Z-
Score filter and then summing their results with the CombSum
[37] filter. The performance of the standard pipeline, without
the distributional filter, is shown as a baseline. The experiments
have been carried out both for English and Italian, results are
shown respectively in Table I and II. Each Table reports the
accuracy a@n computed considering a different number of
answers, the MRR and the significance of the results with
respect to both the baseline (†) and the distributional model
based on TTM (‡). The significance is computed using the non-
parametric Randomization test, as suggested in [39], since it
has proven to be an effective test under several circumstances.
For the Randomization test a Perl script supplied by the
authors4 has been employed.

Moreover, we need to setup some parameters of DSMs.
The window w of terms considered for computing the co-
occurrence matrix is 4, while the number of reduced dimen-
sions considered in LSA, RI and LSARI is equal to 1,000.

Considering each distributional filter on its own, the results
prove that all the proposed DSMs are better than the TTM, and
the improvement is always significant. The best improvement
in English is obtained by LSA (+180%), while in Italian by
LSARI (+161%).

4http://www.mansci.uwaterloo.ca/∼msmucker/software/paired-
randomization-test-v2.pl

TABLE I
EVALUATION RESULTS FOR ENGLISH. BASIC SEARCHER: LUCENE WITH

KEYWORD. STANDARD FILTERS FOR COMBINED EVALUATION:
ST+ET+ED+E. SIGNIFICANCE OF THE DIFFERENCE FOR THE 0.05 WITH

THE BASELINE (†) AND WITH TTM (‡) ARE SHOWN.

Run a@1 a@5 a@10 a@30 MRR

alone

TTM 0.060 0.145 0.215 0.345 0.107
RI 0.180 0.370 0.425 0.535 0.267‡

LSA 0.205 0.415 0.490 0.600 0.300‡

LSARI 0.190 0.405 0.490 0.620 0.295‡

combined

baseline 0.445 0.635 0.690 0.780 0.549
TTM 0.535 0.715 0.775 0.810 0.614†

RI 0.550 0.730 0.785 0.870 0.637†‡

LSA 0.560 0.725 0.790 0.855 0.637†

LSARI 0.555 0.730 0.790 0.870 0.634†

TABLE II
EVALUATION RESULTS FOR ITALIAN. BASIC SEARCHER: LUCENE WITH

KEYWORD. STANDARD FILTERS FOR COMBINED EVALUATION:
ST+ET+ED+E. SIGNIFICANCE OF THE DIFFERENCE FOR THE 0.05 WITH

THE BASELINE (†) AND WITH TTM (‡) ARE SHOWN.

Run a@1 a@5 a@10 a@30 MRR

alone

TTM 0.060 0.140 0.175 0.280 0.097
RI 0.175 0.305 0.385 0.465 0.241‡

LSA 0.155 0.315 0.390 0.480 0.229‡

LSARI 0.180 0.335 0.400 0.500 0.254‡

combined

baseline 0.365 0.530 0.630 0.715 0.441
TTM 0.405 0.565 0.645 0.740 0.539†

RI 0.465 0.645 0.720 0.785 0.555†

LSA 0.470 0.645 0.690 0.785 0.551†

LSARI 0.480 0.635 0.690 0.785 0.557†‡

Taking into account the distributional filters combined with
the standard filter pipeline, the results prove that all the
combinations are able to overcome the baseline. In English
we obtain an improvement, about 16% with respect to the
baseline, and the result obtained by the TTM is significant.
For the Italian language, we achieve a better improvement.
The best result is obtained by LSARI with an improvement of
26% with respect to the baseline.

The slight difference in performance between LSA and
LSARI proves that LSA applied to the matrix obtained by
RI produce the same result of the LSA applied to TTM, but
requiring less computation time, as the matrix obtained by RI
contains less dimensions than the TTM matrix.

In general, the obtained results are encouraging and prove
the effectiveness of using DSMs in our QA framework. More-
over, the proposed semantic spaces are able to outperform the
classical TTM in our evaluation.

Finally, the improvement obtained considering each dis-
tributional filter on its own shows an higher improvement
than their combination with the standard filter pipeline. This
suggests that a more complex method to combine filters should
be used in order to strengthen the contribution of each of them.
To this purpose, we plan to investigate some learning to rank
[40] approaches from IR as future work.

VI. RELATED WORK

Most closed-domain QA systems use a variety of NLP
methods to help the understanding of users’ questions and
the matching of passages extracted from documents [41],
[42]. The most commonly adopted linguistic analysis steps
include: stemming, lemmatization with dictionaries, part-of-
speech tagging, parsing, named entity recognition, lexical
semantics (Word Sense Disambiguation), etc. The use of these
NLP steps is fundamental to find the correct answer in closed-
domain QA, since there is likely to be few answers to any
user’s question and the way in which they are expressed may
be significantly different from the question, as stressed in [43].
The difficulty of the task lies in mapping questions to answers
by way of uncovering complex lexical, syntactic, or semantic
relationships between questions and candidate answers.

On the other hand, Open-domain QA systems exploit redun-
dancy alongside with textual pattern extraction and matching
to find and rank candidate answers [44]–[47].

Semantic approaches have been adopted among QA systems
to improve performance. The Ephyra framework [48] lever-
aged Semantic Role Labeling to identify semantic structures
in documents that match those in the question. Semantic
information has shown to be useful also in the re-ranking of
passages as shown in [49]. However, semantic approaches can
be exploited to provide an enriched visual representation of
the answer in the form of a semantic graph, as described by
[50].

Our approach differs from the proposed literature as it
exploits both explicit semantic information obtained from the
NLP pipeline and latent semantic information coming from
DSMs. Moreover, our system supports different languages
and implements all the analysis and searching steps for both
English and Italian. Indeed, it is important to underline that
the proposed DSMs are language-independent.

DSMs have not been used directly in question answering,
while some applications to IR exist. In [51] the authors de-
scribe a tool which relies on Random Indexing (RI) to built an
IR model. LSA is widely used in IR to perform term-doc ma-
trix reduction obtaining good results and significant improve-
ment with respect to the classical Vector Space Model [15]. In
[6] an approach to ambiguity resolution in IR is proposed. The
authors describe a sense-based retrieval, a modification of the
standard vector-space model, in which the meanings of a word
are inferred by applying clustering technique to a word space.
The similarity between the word vector and the closest cluster
centroid will give the proper sense. The IR system proposed
by the authors gives an improvement in precision with respect
to the word-based retrieval. Moreover, in [52], an IR system
able to combine word sense disambiguation (WSD) and word
sense discrimination based on RI is proposed. The combination
of WSD and RI is performed by a semantic engine, SENSE,
which is able to combine several document representations in
a unique framework.

DSMs are widely exploited in the computational linguistic
field in order to solve problems related to word similarity and

semantic composition of meanings. A useful survey of the use
of VSMs for semantic processing of text is reported in [53],
while an analysis of some compositional operators is described
in [54].

VII. CONCLUSIONS

In this paper, a method to integrate Distributional Semantic
Models (DSMs) into a Question Answering system, called
QuestionCube, has been described. DSMs represent words
as mathematical points in a geometric space, also known
as semantic space. Words are similar if they are close in
that space. The idea is to exploit this kind of similarity to
compute the relevance of candidate answers with respect to
the user’s question. Moreover, we propose several kinds of
DSMs based on classical Term-Term co-occurrence Matrix
(TTM), latent semantic analysis (LSA), random indexing (RI)
and a combination of the last two techniques. The evaluation
has been performed on the ResPubliQA 2010 Dataset adopted
in the 2010 CLEF QA Competition [9] both for English and
Italian. The results prove the effectiveness of the proposed
approach, and highlight that more sophisticated techniques
such as LSA and RI are able to outperform the simple term-
term matrix used as baseline.

As future work, we plan to investigate more complex
operators for the vector representation of both answers and
questions by exploiting the relations between terms.

REFERENCES

[1] L. Wittgenstein, Philosophical Investigations. Blackwell, 1953, (Trans-
lated by G.E.M. Anscombe).

[2] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Commun. ACM, vol. 18, pp. 613–620, November
1975.

[3] T. K. Landauer and S. T. Dumais, “A solution to Plato’s problem: The
latent semantic analysis theory of acquisition, induction, and representa-
tion of knowledge,” Psychological Review, vol. 104, pp. 211–240, 1997.

[4] C. Burgess, K. Livesay, and K. Lund, “Explorations in context space:
Words, sentences, discourse,” Discourse Processes, vol. 25, no. 2-3, pp.
211–257, 1998.

[5] M. N. Jones and D. J. K. Mewhort, “Representing word meaning and
order information in a composite holographic lexicon,” Psychological
Review, vol. 114, no. 1, pp. 1–37, 2007.

[6] H. Schütze and J. O. Pedersen, “Information retrieval based on word
senses,” in Proceedings of the 4th Annual Symposium on Document
Analysis and Information Retrieval, 1995, pp. 161–175.

[7] H. Schütze, “Automatic word sense discrimination,” Comput.
Linguist., vol. 24, pp. 97–123, March 1998. [Online]. Available:
http://portal.acm.org/citation.cfm?id=972719.972724

[8] E. M. Voorhees and D. M. Tice, “The trec-8 question answering track
evaluation,” in In Text Retrieval Conference TREC-8, 1999, pp. 83–105.

[9] A. Penas, P. Forner, A. Rodrigo, R. F. E. Sutcliffe, C. Forascu, and
C. Mota, “Overview of ResPubliQA 2010: Question Answering Evalua-
tion over European Legislation.” in Working notes of ResPubliQA 2010
Lab at CLEF 2010, M. Braschler, D. Harman, and E. Pianta, Eds., 2010.

[10] J. Bert F. Green, A. K. Wolf, C. Chomsky, and K. Laughery, “Baseball,
an automatic question-answerer,” Managing Requirements Knowledge,
International Workshop on, vol. 0, p. 219, 1961.

[11] R. Simmons, “Answering english questions by computer: A survey,”
Communications of the ACM, vol. 8, no. 1, pp. 53–70, 1965.

[12] D. A. Ferrucci, E. W. Brown, J. Chu-Carroll, J. Fan, D. Gondek,
A. Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg, J. M. Prager,
N. Schlaefer, and C. A. Welty, “Building Watson: An Overview of the
DeepQA Project,” AI Magazine, vol. 31, no. 3, pp. 59–79, 2010.

[13] D. A. Ferrucci, “Ibm’s watson/deepqa,” SIGARCH Computer Architec-
ture News, vol. 39, no. 3, 2011.

[14] P. Molino and P. Basile, “QuestionCube: a Framework for Question
Answering,” in IIR, ser. CEUR Workshop Proceedings, G. Amati,
C. Carpineto, and G. Semeraro, Eds., vol. 835. CEUR-WS.org, 2012,
pp. 167–178.

[15] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society for Information Science, vol. 41, no. 6, pp. 391–407,
1990.

[16] P. Kanerva, Sparse Distributed Memory. MIT Press, 1988.
[17] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings

into a hilbert space,” Conference on Modern Analysis and Probability,
Contemporary Mathematics, vol. 26, p. 189–206, 1984.

[18] S. Dasgupta and A. Gupta, “An elementary proof of the Johnson-
Lindenstrauss lemma,” Technical Report TR-99-006, International Com-
puter Science Institute, Berkeley, California, USA, Tech. Rep., 1999.

[19] L. Sellberg and A. Jönsson, “Using random indexing to improve singular
value decomposition for latent semantic analysis,” in Proceedings of
the Sixth International Conference on Language Resources and Evalu-
ation (LREC2008), N. Calzolari, K. Choukri, B. Maegaard, J. Mariani,
J. Odjik, S. Piperidis, and D. Tapias, Eds. Marrakech, Morocco:
European Language Resources Association (ELRA), 2008, pp. 2335–
2338.

[20] N. Schlaefer, P. Gieselman, and G. Sautter, “The ephyra qa system at
trec 2006,” in TREC, 2006.

[21] C. Fellbaum, WordNet: an electronic lexical database, ser. Language,
speech, and communication. MIT Press.

[22] E. Zanchetta and M. Baroni, “Morph-it! a free corpus-based morpholog-
ical resource for the italian language,” Corpus Linguistics 2005, vol. 1,
no. 1, 2005.

[23] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[24] T. Kudo and Y. Matsumoto, “Fast Methods for Kernel-Based Text
Analysis,” in Proceedings of the 41st Annual Meeting of the Association
for Computational Linguistics. Sapporo, Japan: ACL, July 2003, pp.
24–31.

[25] E. Agirre and A. Soroa, “Personalizing PageRank for word sense
disambiguation,” in Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguistics, ser. EACL
’09. Stroudsburg, PA, USA: Association for Computational Linguistics,
2009, pp. 33–41.

[26] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual Web
Search Engine,” in Seventh International World-Wide Web Conference
(WWW 1998), 1998.

[27] X. Li and D. Roth, “Learning question classifiers,” in Proceedings
of the 19th international conference on Computational linguistics -
Volume 1, ser. COLING ’02. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2002, pp. 1–7.

[28] ——, “Learning question classifiers: the role of semantic information,”
Nat. Lang. Eng., vol. 12, pp. 229–249, September 2006.

[29] S. Robertson and H. Zaragoza, “The probabilistic relevance framework:
Bm25 and beyond,” Found. Trends Inf. Retr., vol. 3, pp. 333–389, April
2009.

[30] C. Carpineto, R. de Mori, G. Romano, and B. Bigi, “An information-
theoretic approach to automatic query expansion,” ACM Trans. Inf. Syst.,
vol. 19, pp. 1–27, 2001.

[31] Y. Lv and C. Zhai, “Positional relevance model for pseudo-relevance
feedback,” in Proceeding of the 33rd international ACM SIGIR confer-
ence on Research and development in information retrieval, ser. SIGIR
’10. New York, NY, USA: ACM, 2010, pp. 579–586.

[32] G. Amati and C. J. Van Rijsbergen, “Probabilistic models of information
retrieval based on measuring the divergence from randomness,” ACM
Trans. Inf. Syst., vol. 20, pp. 357–389, October 2002.

[33] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information
Retrieval. New York, NY, USA: Cambridge University Press, 2008.

[34] A. Singhal, C. Buckley, and M. Mitra, “Pivoted document length
normalization,” in Proceedings of the 19th annual international ACM
SIGIR conference on Research and development in information retrieval,
ser. SIGIR ’96. New York, NY, USA: ACM, 1996, pp. 21–29.

[35] C. Monz, “Minimal span weighting retrieval for question answering,”
in Proceedings of the SIGIR Workshop on Information Retrieval for
Question Answering, R. Gaizauskas, M. Greenwood, and M. Hepple,
Eds., 2004, pp. 23–30.

[36] C. Monz and M. de Rijke, “Tequesta: The university of amsterdam’s
textual question answering system,” in TREC, 2001.

[37] J. A. Shaw, E. A. Fox, J. A. Shaw, and E. A. Fox, “Combination of
multiple searches,” in The Second Text REtrieval Conference (TREC-2,
1994, pp. 243–252.

[38] P. Smolensky, “Tensor product variable binding and the representation
of symbolic structures in connectionist systems,” Artificial Intelligence,
vol. 46, no. 1-2, pp. 159–216, Nov. 1990. [Online]. Available:
http://dx.doi.org/10.1016/0004-3702(90)90007-M

[39] M. D. Smucker, J. Allan, and B. Carterette, “A comparison of statis-
tical significance tests for information retrieval evaluation,” in CIKM
’07: Proceedings of the sixteenth ACM conference on Conference on
information and knowledge management. New York, NY, USA: ACM,
2007, pp. 623–632.

[40] T. Liu, “Learning to rank for information retrieval,” Foundations and
Trends in Information Retrieval, vol. 3, no. 3, pp. 225–331, 2009.

[41] S. M. Harabagiu, D. I. Moldovan, M. Pasca, R. Mihalcea, M. Surdeanu,
R. C. Bunescu, R. Girju, V. Rus, and P. Morarescu, “Falcon: Boosting
knowledge for answer engines,” in TREC, 2000.

[42] E. H. Hovy, L. Gerber, U. Hermjakob, M. Junk, and C.-Y. Lin, “Question
answering in webclopedia,” in TREC, 2000.

[43] J. Chen, A. Diekema, M. D. Taffet, N. J. McCracken, N. E. Ozgencil,
O. Yilmazel, and E. D. Liddy, “Question answering: Cnlp at the trec-10
question answering track,” in TREC, 2001.

[44] S. Dumais, M. Banko, E. Brill, J. Lin, and A. Ng, “Web question
answering: is more always better?” in Proceedings of the 25th annual
international ACM SIGIR conference on Research and development in
information retrieval, ser. SIGIR ’02. New York, NY, USA: ACM,
2002, pp. 291–298.

[45] S. M. Harabagiu, M. A. Paşca, and S. J. Maiorano, “Experiments with
open-domain textual question answering,” in Proceedings of the 18th
conference on Computational linguistics - Volume 1, ser. COLING ’00.
Stroudsburg, PA, USA: Association for Computational Linguistics, 2000,
pp. 292–298.

[46] M. Paşca, Open-domain question answering from large text collections,
ser. Studies in computational linguistics. CSLI Publications, 2003.

[47] J. Lin, “An exploration of the principles underlying redundancy-based
factoid question answering,” ACM Trans. Inf. Syst., vol. 25, April 2007.

[48] N. Schlaefer, J. Ko, J. Betteridge, M. A. Pathak, E. Nyberg, and
G. Sautter, “Semantic Extensions of the Ephyra QA System for TREC
2007,” in TREC, 2007.

[49] M. W. Bilotti, “Linguistic and semantic passage retrieval strategies for
question answering,” Ph.D. dissertation, Carnegie Mellon University,
2009.

[50] L. Dali, D. Rusu, B. Fortuna, D. Mladenic, and M. Grobelnik, “Question
answering based on semantic graphs,” in Proceedings of the Workshop
on Semantic Search (Sem-Search 2009), 2009.

[51] D. Widdows and K. Ferraro, “Semantic Vectors: A Scalable Open
Source Package and Online Technology Management Application,” in
Proceedings of the 6th International Conference on Language Resources
and Evaluation (LREC2008), N. Calzolari, K. Choukri, B. Maegaard,
J. Mariani, J. Odjik, S. Piperidis, and D. Tapias, Eds. Marrakech,
Morocco: European Language Resources Association (ELRA), 2008,
pp. 1183–1190.

[52] P. Basile, A. Caputo, and G. Semeraro, “Integrating Sense Discrim-
ination in a Semantic Information Retrieval System,” in Information
Retrieval and Mining in Distributed Environments, ser. Studies in Com-
putational Intelligence, A. Soro, E. Vargiu, G. Armano, and G. Paddeu,
Eds. Springer Berlin / Heidelberg, 2011, vol. 324, pp. 249–265.

[53] P. D. Turney and P. Pantel, “From frequency to meaning:
vector space models of semantics,” J. Artif. Int. Res.,
vol. 37, no. 1, pp. 141–188, Jan. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1861751.1861756

[54] J. Mitchell and M. Lapata, “Composition in distributional models of
semantics,” Cognitive Science, vol. 34, no. 8, pp. 1388–1429, 2010.
[Online]. Available: http://dx.doi.org/10.1111/j.1551-6709.2010.01106.x

