

Distributional Semantics for Answer Re-ranking in Question Answering*

Piero Molino, <u>Pierpaolo Basile</u>, Annalina Caputo, Pasquale Lops, Giovanni Semeraro {pierpaolo.basile@uniba.it}

Dept. of Computer Science, University of Bari Aldo Moro

* This paper summarizes the main results already published in Molino, P., Basile, P., Caputo, A., Lops, P., Semeraro, G.: Exploiting Distributional Semantic Models in Question Answering. In: 6th IEEE-ICSC 2012, Palermo, Italy.

Background

You shall know a word by the company it keeps!

Meaning of a word is determined by its usage

memory floppy_disk ram chip disk hard_disk printer software computer workstation os pc device operating_system linux mouse mice tux rabbit rat penguin animal dog insect cat monkey

Background

Distributional Semantic Models (DSMs)

- represent words as points in a geometric space
- do not require specific text operations
- corpus/language independent
- Widely used in IR and Computational Linguistic
 - semantic text similarity, synonyms detection, query expansion, ...

Never been used for candidate answers re-ranking

Our idea

 Using DSMs into a QA system for candidate answers re-ranking

– QuestionCube: a framework for QA

- Exploit DSMs
 - compare semantic similarity between user's question and candidate answers

www.wikiedi.it

Distributional Semantic Models

Term-term co-occurrence matrix: each cell contains the co-occurrences between two terms within a prefixed distance

	dog	cat	computer	animal	mouse
dog	0	4	0	2	1
cat	4	0	0	3	5
computer	0	0	0	0	3
animal	2	3	0	0	2
mouse	1	5	3	2	0

...Distributional Semantic Models

TTM: Term-Term co-occurrence Matrix

Latent Semantic Analysis (LSA): relies on the Singular Value Decomposition (SVD) of the cooccurrence matrix

Random Indexing (RI): based on the Random Projection

Latent Semantic Analysis over Random Indexing (LSARI)

Random Indexing

- Generate and assign a context vector to each context element (e.g. document, passage, term, ...)
- 2. Term vector is the sum of the context vectors in which the term occurs
 - sometimes the context vector could be boosted by a score
- RI is a locality-sensitive hashing method which approximate the cosine distance between vectors

Latent Semantic Analysis over Random Indexing

- 1. Reduce the dimension of the co-occurrences matrix using RI
- 2. Perform LSA over RI (LSARI)
 - reduction of LSA computation time: RI matrix contains less dimensions than co-occurrences matrix

QuestionCube framework...

Natural Language pipeline for Italian and English

- PoS-tagging, lemmatization, Name Entity Recognition, Phrase Chunking, Dependency Parsing, Word Sense Disambiguation (WSD)
- IR model based on classical VSM or BM25
 - several query expansion strategies

Passage retrieval

Distributional filter...

Compute the similarity between the user's question and each candidate answer Both user's question and candidate answer are represented by more than one term

a method to compose words is necessary

...Distributional filter...

...Distributional filter (compositional approach)

Addition (+): pointwise sum of components

- represent complex structures by summing words which compose them
- Given $q=q_1 q_2 \dots q_n$ and $a=a_1 a_2 \dots a_m$
 - question: $\vec{q} = \vec{q}_1 + \vec{q}_2 + ... + \vec{q}_n$
 - candidate answer: $\vec{a} = \vec{a}_1 + \vec{a}_2 + \ldots + \vec{a}_m$

- similarity sim
$$(q, a) = \frac{\vec{q} \cdot \vec{a}}{\|\vec{q}\|\|\vec{a}\|}$$

Evaluation...

Dataset: 2010 CLEF QA Competition

- 10,700 documents
 - from European Union legislation and European Parliament transcriptions
- 200 questions
- Italian and English
- DSMs
 - 1,000 vector dimension (TTM/LSA/RI/RILSA)
 - 50,000 most frequent words
 - co-occurrence distance: 4

...Evaluation

- 1. Effectiveness of DSMs in QuestionCube
- 2. Comparison between the several DSMs adopted
- Metrics
 - a@n: accuracy taking into account only the first n answers
 - MRR based on the rank
 of the correct answer

$$\frac{\sum_{i=1}^{N} \frac{1}{rank_{i}}}{N}$$

Evaluation (alone scenario)

Only distributional filter is adopted: no other filters in the pipeline

Evaluation (combined)

Distributional filter is combined with the other filters

- using CombSum function
- *baseline*: distributional filter is removed

Results (English)...

	Run	a@1	MRR	
alone	TTM	.060	.107	
	RI	.180	.267	
	LSA	.205	.300 -	
	LSARI	.190	.295	
combined	baseline*	.445	.549	
	TTM	.535	.614 ¹	
	RI	.550	.637 ^{1,2}	
	LSA	.560	.637 ¹	
	LSARI	.555	.634 ¹	

¹significat wrt. baseline ²significat wrt. TTM *without distributional filter

...Results (Italian)

	Run	a@1	MRR	
alone	TTM	.060	.097	
	RI	.175	.241	
	LSA	.155	.229 -	
	LSARI	.180	.254	
combined	baseline*	.365	.441	
	TTM	.405	.539 ¹	
	RI	.465	.555 ¹	
	LSA	.470	.551 ¹	
	LSARI	.480	.557 ^{1,2}	

¹significat wrt. baseline ²significat wrt. TTM *without distributional filter

Final remarks...

Alone: all the proposed DSMs perform better than the TTM

in particular LSA and LSARI

Combined: all the combinations are able to overcome the baseline

– English +16% (RI/LSA), Italian +26% (LSARI)

No remarkable difference in performance between LSA and LSARI

...Final remarks

Distributional filter in the alone scenario shows an higher improvement than in the combination scenario

Future work

-find more effective way to combine filters (learning to rank approach)

Exploit more complex semantic compositional strategies

Thank you for your attention!

Questions?

<pierpaolo.basile@uniba.it>

BACKUP SLIDES

Context Vector

$0\ 0\ 0\ 0\ 0\ 0\ -1\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ -1$

- sparse
- high dimensional
- ternary {-1, 0, +1}
- small number of randomly distributed nonzero elements

Random Indexing (example)

John eats a red apple

 $\begin{aligned} \mathsf{CV}_{\mathsf{john}} & \to (0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 1, \, 0, \, -1, \, 0) \\ \mathsf{CV}_{\mathsf{eat}} & \to (1, \, 0, \, 0, \, 0, \, -1, \, 0, \, 0, \, 0, \, 0, \, 0) \\ \mathsf{CV}_{\mathsf{red}} & \to (0, \, 0, \, 0, \, 1, \, 0, \, 0, \, 0, \, -1, \, 0, \, 0) \end{aligned}$

$$TV_{apple} = CV_{john} + CV_{eat} + CV_{red} = (1, 0, 0, 1, -1, 0, 1, -1, -1, 0)$$

Random Indexing (formal)

$$B^{n,k} = A^{n,m}R^{m,k} \quad k << m$$

B nearly preserves the distance between points (Johnson-Lindenstrauss lemma) $d_r = C \times d$

RI is a locality-sensitive hashing method which approximate the cosine distance between vectors