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1 Introduction

In the last twenty years machine learning (ML) has progressively moved from a academic endeavor to a pervasive
technology adopted in almost every aspect of computing. ML-powered products are now embedded in every aspect of
our digital lives: from recommendations of what to watch, to divining our search intent, to powering virtual assistants in
consumer and enterprise settings. Moreover, recent successes in applying ML in natural sciences [Senior et al., 2020]
had revealed that ML can be used to tackle some of the hardest real-world problems humanity faces today. For these
reasons ML has become central in the strategy of tech companies and has gathered even more attention from academia
than ever before. The process that led to the current ML-centric computing world was hastened by several factors,
including hardware improvements that enabled the massively parallel processing , data infrastructure improvements that
enabled storage and consumption of massive datasets needed to train most ML models, and algorithmic improvements
that allowed better performance and scaling.

Despite these successes, we argue that what we have witnessed in terms of ML adoption is only the tip of the iceberg.
Right now the people training and using ML models are typically experienced developers with years of study working
within large organizations, but we believe the next wave of ML systems will allow a substantially larger amount of
people, potentially without any coding skills, to perform the same tasks. These new ML systems will not require
users to fully understand all the details of how models are trained and utilized for obtaining predictions, a substantial
barrier of entry, but will provide them a more abstract interface that is less demanding and more familiar. Declarative
interfaces are well suited for this goal, by hiding complexity and favouring separation of interest, and ultimately leading
to increased productivity.

We worked on such abstract interfaces by developing two declarative ML systems, Overton Ré [2020] and Lud-
wig Molino et al. [2019], that require users to declare only their data schema (names and types of inputs) and tasks rather
then writing low level ML code. In this article our goal will be to describe how ML systems are currently structured,
to highlight what factors are important for ML project success and which ones will determine wider ML adoption,
what are the issues current ML systems are facing and how the systems we developed addressed them. Finally we will
describe what we believe can be learned from the trajectory of development of ML and systems throughout the years
and how we believe the next generation of ML systems will look like.

1.1 Software engineering meets ML

A factor not enough appreciated in the successes of ML is an improved understanding of the process of producing
real-world machine learning applications, and how different it is from traditional software development. Building a
working ML application requires a new set of abstractions and components, well characterized by Sculley et al. [2015],
who also identified how idiosyncratic aspects of ML projects may lead to a substantial increase in technical debt, i.e. the
cost of reworking a solution that was obtained by cutting edges rather than following software engineering principles.
These bespoke aspects of ML development are opposed to software engineering practices, with the main responsible
being the amount of uncertainty at every step, which leads to a more service-oriented development process [Casado and
Bornstein, 2020].
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Figure 1: Approximate depiction of the relationship between how complex to learn and use a software tool is (either
languages, libraries or entire products) and the amount of users potentially capable of using it, across different fields of
computing.

Despite the bespoke aspects of each individual ML project, researchers first and industry later distilled common patterns
that abstract the most mechanical parts of the process of building ML projects in a set of tools, systems and platforms.
Consider for instance how the availability of projects like scikit-learn, TensorFlow, PyTorch, and many others, allowed
for a wide ML adoption and quicker improvement of models through more standardized processes: where before
implementing a ML model required years of work for highly skilled ML researchers, now the same can be accomplished
in few lines of code that most developers would be able to write. In a recent paper Hooker [2020] argues that availability
of accelerator hardware determines the success of ML algorithms potentially more than their intrinsic merits. We agree
with that assessment, and we add that availability of easy to use software packages tailored to ML algorithms has been
at least as important for their success and adoption, if not more important.

1.2 The coming wave of ML Systems

We believe generations of compiler, database, and operating systems work may inspire new foundational questions of
how to build the next generation of ML-powered systems that will allow people without ML expertise to train models
and obtain predictions through more abstract interfaces. One of the many lessons learned from those systems throughout
the history of computing is that substantial increases in adoption always come with separation of interests and hiding
of complexity, as we depict in Figure 1. Like a compiler hides the complexity of low level machine code behind the
facade of a higher level, more human-readable language, and as a database management system hides the complexity of
data storage, indexing and retrieval behind the facade of a declarative query language, so we believe that the future of
ML systems will steer towards hiding complexity and exposing simpler abstractions, likely in a declarative way. The
separation of interests implied by such a shift will make it possible for highly skilled ML developers and researchers to
work on improving the underlying models and infrastructure in a way that is similar to how today compiler maintainers
and database developers improve their systems, while allowing a wider audience to use ML technologies by interfacing
with them at a higher level of abstraction, like a programmer who writes code in a simpler language without knowing
how it compiles in machine code or a data analyst who writes SQL queries without knowing the data structures used
in the database indices or how a query planner works. These analogies suggest that declarative interfaces are good
candidates for the next wave of ML systems, with their hiding of complexity and separation of interest being the key to
bring ML to non-coders.

We will provide a brief overview of the ML development life-cycle and the current state of ML platforms, together
with what we identified as challenges and desiderata for ML systems. We will also describe some initial attempts at
building new declarative abstractions we worked on first hand that address those challenges. We discovered that these
declarative abstractions are useful for making ML more accessible to end users by avoiding having them write low-level
error-prone ML code. Finally, we will describe the lessons learned from these attempts and provide some speculations
on what may lay ahead.
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Figure 2: A four-steps coarse-grained model of the lifecycle of a ML project.

2 Machine Learning Systems

2.1 Machine Learning development life-cycle

Many descriptions of the development life-cycle of machine learning projects have been proposed, but the one we adopt
in Figure 2 is a simple coarse-grained view that serves our exposition purposes, made of four high-level steps:

1. business need identification
2. data exploration and collection
3. pipeline building
4. deployment and monitoring

Each of these steps is composed of many sub-steps and the whole process can be seen as a loop, with information
gathered from the deployment and monitoring of an ML system helping identifying the business needs for the next
cycle. Despite the sequential nature of the process, each step’s outcome is highly uncertain, and negative outcomes of
each step may send the process back to previous ones. For instance the data exploration may reveal that the available
data does not contain enough signal to address the identified business need, or the pipeline building may reveal that,
given the available data, no model can reach a high enough performance to address the business need and thus new data
should be collected.

Because of the uncertainty that is intrinsic in ML processes, writing code for ML projects often leads to idiosyncratic
practices: there is little to no code reuse and no logical / physical separation between abstractions, with even minor
decisions taken early in the process impacting every aspect of the downstream code. This is opposed to what happens,
for instance, in database systems, where abstractions are usually very well defined: in a database system changes in how
you store your data don’t change your application code or how you write you queries, while in ML projects changes in
the size or distribution of your data end up changing your application code, making code difficult to reuse.

2.2 Machine Learning platforms and AutoML

Each step of the ML process is currently supported by a set of tools and modules, with the potential advantage of
making these complex systems more manageable and understandable.

Unfortunately, the lack of well defined standard interfaces between these tools and modules limits the benefits of a
modularized approach and makes architecture design choices difficult to change. The consequence is that these systems
suffer from a cascade of compounding effects if errors or changes happen at any stage of the process, particularly
early on, i.e. when a new version of a tokenizer is released with a bug, and all the following pieces (embedding layers,
pretrained models, prediction modules) start to return wrong results. The dataframe abstraction is so far the only widely
used contact point between components, but it could be in itself problematic because of wide incompatibility among
different implementations.

More end-to-end platforms are being built mostly as monolithic internal tools in big companies to address the issue, but
that often comes at the cost of having a bottleneck at either the organizational or at the technological level. ML platform
teams may become gatekeepers for ML progress throughout the organization, i.e. when a research team devises a
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new algorithm that does not fit into the mold of what the platform already supports, which makes productionizing the
new algorithm extremely difficult. These ML platforms can become a crystallization of outdated practices in the ever
changing ML landscape.

At the same time AutoML systems promise to automate the human decision making involved in some parts of the
process, in particular in the pipeline building, and, through techniques like hyperparameter optimization [Li et al., 2017]
and architecture search [Elsken et al., 2019] , abstract the modeling part of the ML process.

AutoML is a promising direction, although research efforts are often centered around optimizing single steps of the
pipeline (in particular finding the model architecture) rather than optimizing the whole pipeline, and the costs of finding
a marginally better solution than a commonly accepted one may end up outweighting the gains. In some instances
this worsens the reusability issue, and contrasts with recent findings showing how architecture may actually not be
the most impactful aspect of a model, as opposed to its size, at least for autoregressive models trained on big enough
datasets [Henighan et al., 2020]. Despite this, we believe that the automation AutoML brings is positive in general,
as it allows developers to focus on what matters most and automate away more mundane and repetitive parts of the
development process and help reduce the number of decisions they have to make.

We very much appreciate the intent of those platforms and AutoML systems to encapsulate best practices and simplify
parts of the ML process, but we argue that there could be a better, less monolithic way, to think about ML platforms
that may enable the advantages of these platforms while at the same time drastically reduce their issues, and that can
incorporate the advantages of AutoML at the same time.

2.3 Challenges and desiderata

Our experiences in developing both research and industrial ML projects and platforms led us to identify a set of
challenges common to most of them and some desired solutions, which influenced us to develop declarative ML
systems.

• Challenge 1: Exponential decision explosion. Building a ML system involves many decisions, all need to be
correct, with compounding errors at each stage. Desideratum 1: Good defaults and automation. Decisions
should be reduced by nudging developers towards reasonable defaults and a repeatable automated process that
makes those decisions (hyperparameter optimization for instance).

• Challenge 2: “New Model-itis”. ML production teams try to build a new model and fail at improving
performance for lack of understanding of the qulity and failure modes of previous models. Desideratum
2: Standardization and focus on quality. Low-added-value parts of the ML process should be automated
with standardized evaluation and data processing and automated model building and comparison, shifting the
attention from writing low level ML code to monitoring quality and improve supervision and shifting away the
attention from mono-dimensional performance-based model leaderboards towards holistic evaluation.

• Challenge 3: Organizational chasms. There are gaps between teams working in pipelines that make it hard
to share code and ideas, i.e. when entity disambiguation and intent classification teams are different in a virtual
assistant project and don’t share the codebase, which leads to replication and technical debt. Desideratum 3:
Common interfaces. Increase reusability by coming up with standard interfaces that favor modularity and
interchangeability of implementations.

• Challenge 4: Scarcity of expertise. Not many developers, even in large companies, can write low level
Ml code. Desideratum 4: Higher level abstractions. Developers should not have to set hyperparameters
manually or implement their custom model code unless really necessary, as it accounts for just a tiny fraction
of the project lifecycle, and differences are usually tiny.

• Challenge 5: Process slowness. The process of developing ML projects can take months or years in some
organizations to reach a desired quality because of the many iterations requires. Desideratum 5: Rapid
iteration. Quality of ML projects improves by incorporating learnings from each iteration, so the faster each
iteration is, the higher quality can be achieved in the same time. The combination of automation and higher
level abstractions can improve the speed of iteration and in turn help improve quality.

• Challenge 6: Many diverse stakeholders. There are many stakeholders involved in the success of a ML
project, with different skill sets and different interests, but only a tiny fraction of them has the capability to
work hands-on on the system. Desideratum 6: Separation of interests. Enforcing a separation of interests
with multiple user views would make a ML system accessible to more people in the stack allowing developers
to focus on delivering value and improving the project outcome and consumers to tap into the created value
more easily.
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3 Declarative ML Systems

We believe that a declarative ML systems could fulfill the promise of addressing the above-mentioned challenges by
implementing most of the desiderata. The term may be overloaded in the vast literature of ML models and systems,
so we restrict our definition of declarative ML systems to those systems that impose a separation between what a ML
system should do and how it actually does it. The “what” part can be declared with a configuration, that depending on
its complexity and compositionality, can be seen as a declarative language, and can include information about the task
to be solved by the ML system and the schema of the data it should be trained on. This can be considered a low / no /
zero code approach, as the declarative configuration is not an imperative language where the “how” is specified, so a
user of a declarative ML system does not need to know how to implement a ML model or a ML pipeline as much as
someone who writes a SQL query doesn’t need to know about database indices and query planning. The declarative
configuration is translated / compiled into a trainable ML pipeline that respects the provided schema, and the trained
pipeline can then be used for obtaining predictions.

Many declarative ML approaches have been proposed over the course of the years, most of which use either logic or
probability theory or both as their main declarative interface. Some examples of such approaches include probabilistic
graphical models [Koller and Friedman, 2009] and their extensions to relational data such as probabilistic relational
models [Friedman et al., 1999, Milch et al., 2005] and markov logic networks [Domingos, 2004] or purely logical
representations such as Prolog and Datalog. In these models domain knowledge can be specified as dependencies
between variables (and relations) representing the structure of the model and their strength as free parameters. Both the
free parameters and the structure can be also learned from data. These approaches were declarative in that they separate
out the specification semantics from the inference algorithm. However, performing inference on such models is in
general hard and scalability becomes a major challenge. Approches like Tuffy [Niu et al., 2011], DeepDive [Zhang et al.,
2017], and others have been introduced to address the issue. Nevertheless, by separating inference from representation,
these models did a good job at allowing declaration of multitask and highly joint models, but were often outperformed
by more powerful feature driven engines (e.g. deep learning based approaches). We distinguish these declarative ML
models from systems based on their scope: the latter focus on defining declaratively an entire production ML pipeline.

There are other potential higher level abstractions that hide the complexity of parts of the ML pipeline, and they have
their own merits, but we do not consider them declarative ML systems. Examples of such other abstractions could be
libraries that allow users (ML developers) to write simpler ML code by removing the burden of having to write neural
network layers implementations (like Keras does) or having to write a for loop that is distributable and parallelizable
(like PyTorch Lightning does). Other abstractions, like Caffe , allow to write deep neural networks by declaring the
layers of its architecture, but they do it at a level of granularity close to an imperative language. Finally, abstractions
like Thinc provide a robust configuration system for parametrizing models, but also requires to write ML code that
becomes parametrizable by the configuration system, thus not separating the “what” from the “how”.

3.1 Data-first

Integrating data mining and ML tools has been the focus of several major research and industrial efforts since at least
the 90s. For example, Oracle’s Dataminer shipped in 2001. They featured high-level SQL style syntax to use models
and supported models defined externally in Java or via a standard called PMML. These models were effectively syntax
around user-defined functions to perform filtering or inference. At the time, machine learning models were purpose-built
using specialized solvers that required heavy-use of linear algebra packages, e.g., L-BFGS was one of the most popular
for ML models. However, the ML community began to realize that an extremely simple, classical algorithm called
stochastic gradient descent (or incremental gradient methods) could be used to train many important ML models. The
Bismark project [Feng et al., 2012] showed that SGD could piggyback on existing data processing primitives that
were already widely available in database systems (cf. with SciDB that rethought the entire database in terms of linear
algebra). In turn, integrating gradient descent and its variants allowed the DBMS to manage training. This led to a
new breed of systems that integrated training and inference. They provided SQL syntax extensions to train models
in a declarative way to manage training and deployment inside the database. Examples of such systems are Bismark
itself, MADLib [Hellerstein et al., 2012] (which was integrated in Impala, Oracle, Greenplum, etc.), and MLLib [Meng
et al., 2016]. The SQL extensions proposed in Bismark and MADlib are still popular as variants of this approach are
integrated in the modeling language of Google’s BigQuery [Sato, 2012] or within modern open source systems like
SQLFlow [Wang et al., 2020].

The data-centric viewpoint has the advantage of making models usable from withing the same environment where the
data lives, avoiding potentially complicated data pipelines. One issue that emerges is that, by exposing model training as
a primitive in SQL, their users did not have fine-grained control of the modeling process. For some class of models this
became a substantial challenge, as the pain of piping the data to models (which these systems decreased substantially)
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was outweighed by the pain of performing featurization and tuning the model. As a result, many models lived outside
the database.

3.2 Models-first

After successes of deep learning models in computer vision, speech recognition and natural language processing,
the focus of both research and industry shifted towards a model-first approach, where the training process was more
complicated and became the main focus. A wrong implementation of backpropagation and differentiation would
influence the performance of a ML project more than data preprocessing, and efficient computation of deep learning
algorithms on accelerated hardware like GPUs transformed models that were too slow to train into the standard solution
for certain ML problems, specifically perceptual ones. In practice having an efficient wrapper of GPGPU libraries
was more valuable than a generic data preprocessing pipeline. Libraries like TensorFlow and PyTorch focused on
abstracting the intricacies of low-level C code for tensor computation.

The availability of these libraries allowed for simpler model building, so researchers and practitioners started sharing
their models and adapting others’ models to their goals. This process of transferring (pieces of) a pretrained model and
tuning them on a new task started with word embeddings, but was later adopted also in computer vision, and now is
made easier by libraries like Hugging Face’s Transofrmers.

The two systems we built, Overton internally at Apple and Ludwig open source at Uber, are both model-first and focus
on modern deep learning models, but also retrieve some features of the data-first approach, specifically the declarative
nature, by adding separation of interest, and are both capable to use transfer learning.

3.2.1 Overton in a nutshell

Overton [Ré, 2020] spawned from the same observations expressed at the beginning of this article: commodity tools
changed the landscape of ML to the point that we can build tools capable of moving developers up the stack and allow
users to focus and quality and quantity of supervision. It was designed to make sure that people did not need to write new
models for production applications in search, information extraction, question answering, named entity disambiguation,
and other tasks while making it easy to evaluate models and improve performance by ingesting additional relevant data
to get quality results on end deployed models.

Inspired by relational databases, a user would declare a schema that describes the incoming data source called payload.
In addition, a user would also describe a high-level data flow among the tasks, with optionally multiple sources of (weak)
supervision, as shown in Figure 3. The system is able to use this barebones information to compile trainable models
(including data preprocessing and symbols mappings), combine supervision using data programming techniques [Ratner
et al., 2016], compile a model in TensorFlow, PyTorch or CoreML, and produce performance reports and finally export
a deployable model in CoreML, TensorFlow or ONNX.

A key technical idea was that many sub-problems like architecture search or hyperparameter optimization could be
done with simple methods, like coarse grained architecture search (only classes of architectures are chosen, not all
their internal hyperparameters) or very simple grid search. A user could override some of these decisions, but custom
options were not heavily optimized in runtime. Other features included multi-task learning, data slicing and the use of
pretrained models.

The role of Overton users becomes monitoring performance, improve supervision quality by adding new examples and
providing new forms of supervision, they don’t need to write models in low level ML code. Overton was responsible
for massive gains in quality (40% to 82% error reduction) in search and question answering applications at Apple and,
as a consequence, the footprint of the engineering team was substantially reduced and no one was writing low level ML
code.

3.2.2 Ludwig in a nutshell

Ludwig [Molino et al., 2019] is a system that allows its users to build end-to-end deep learning pipelines through a
declarative configuration, train them and use them for obtaining predictions. The pipelines include data preprocessing
that transforms raw data into tensors, the model architecture building, the training loop, the prediction, the postprocessing
of data and the evaluation of pipelines. Ludwig also includes a visualization module for model performance analysis
and comparison, and a declarative hyperparameter optimization module.

One key idea of Ludwig is that it abstracts both the data schema and the tasks as data types feature interfaces so that
users only need to define a list of input features and outputs features, both with their names and data type. This allows
for modularity and extensibility: the same text preprocessing code and the same text encoding architecture code is
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{
  payloads: {
    tokens: [How, tall, ...],
    query: "How tall is the 
            president of the
            united states",
    entities: {
      0: {id: President_(title),
          range: [4,5]},
      1: {id: United_States,
          range: [6,9]},
      2: {id: U.S._state,
          range: [8,9]},
      ...
    }
  },
  tasks: {
    POS: {
      spacy: [ADV, ADJ, VERB, ...]
    },
    EntityType: {
      eproj: [[], 
              ...,
              [location, country]]
    },
    Intent: {
      weak1: President,
      weak2: Height,
      crowd: Height
    },
    IntentArg: {
      weak1: 2,
      weak2: 0,
      crowd: 1
    }
  }
}

{
  payloads: {
    tokens {
      type: sequence,
      max_length: 16
    },
    query: {
      type: singleton,
      base: [tokens]

},
entities: {

      type: set,
      range: tokens}

}
  },
  tasks: {
    POS: {
      payload: tokens,
      type: multiclass
    },

EntityType: {
      payload: tokens,
      type: bitvector

},
    Intent: {
      payload: query,
      type: multiclass
    },
    IntentArg: {
      payload: entities,
      type: select

}
  }
}

{
  tokens: {
    embedding: [
      GLOVE-300,
      BERT,
      XLNet
    ],
    encoder: [
      LSTM,
      BERT,
      XLNet
    ],
    size: [
      256,
      768,
      1024
    ]
  },
  query: {
    agg: [
      max,
      mean
    ]
  },
  entities: {
    embedding: [
      wiki-256, 
      combo-512
    ],
    attention: [
      "128x4",
      "256x8"
    ]
  }
}

Data Record Schema Tuning

Figure 3: Example of an Overton application to a complex NLP task. On the left we show an example data record of a
piece of text, with its payload (inputs, query, tokenization and candidate entities) and tasks (outputs parts of speech,
entity type, intent and intent arguments), In the middle we show the Overton schema, detailing both payloads for the
inputs and tasks for the outputs, with their respective types and parameters. On the right we show a tuning specification
that details the coarse-grained architecture options Overton will choose from and compare for each payload.

reused every time a model that includes text features is instantiated, while the same multi-label classification code for
prediction and evaluation is adopted every time set feature is specified as an output, for instance.

This flexibility and abstraction is made possible by the fact that Ludwig is opinionated about the structure of the deep
learning models it builds, following the encoders-combiner-decoders (ECD) architecture introduced by Molino et al.
[2019], which allows for easily defining multi-modal and multi-task models, depending on the data type of both inputs
and outputs available in the training data. The ECD architecture also defines precise interfaces, which greatly improve
code reuse and extensibility: by imposing the dimensions of the input and output tensors of an image encoder, for
instance, the architecture allows for many interchangeable implementations of image encoding (i.e. a CNN stack, or a
stack of residual blocks, or stack of transformer layers) and choosing which one to use in the configuration requires just
changing one string parameter.

What makes Ludwig general is that, depending on the combination of types of inputs and outputs declared in the
configuration, the specific model instantiated from the ECD architecture solves a different task: input text and output
category will make Ludwig compile a text classification architecture, while an image input and a text output will
result in an image captioning system, and both image and text inputs with a text output will result in a visual question
answering model. Moreover, basic Ludwig configurations are very easy to write and hide most of the complexity of
building a deep learning model, but at the same time they allow the user to specify all details of the architecture, the
training loop and the preprocessing if they so desire, as shown in Figure 4. The declarative hyperopt section shown in
Figure 4(C) makes it possible to automate architectural, training and preprocessing decisions.
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{
  input_features: [
    {name: message,
     type: text},
    {name: author,
     type: category}
  ],
  output_features: [
    {name: label,
     type: category}
  ]
}

{
  input_features: [
    {name: img,
     type: image,
     encoder: resnet}
  ],
  output_features: [
    {name: caption,
     type: text}
  ]
}

{
  input_features: [
    {name: book_title,
     type: text,
     encoder: transformer,
     embedding_size: 768
     num_layers: 6,
     preprocessing: {
       length_limit: 30
     }},
    {name: purchases,
     type: numerical,
     preprocessing: {
       normalization: minmax
     }}
  ],
  combiner: {
    type: concat,
    num_fc_layers: 2,
    fc_size: 256
  },
  output_features: [
    {name: score,
     type: numerical,
     loss: {type: mae}
    },
    {name: tags,
     type: set}
  ],

  training: {
    epochs: 100,
    learning_rate: 0.001,
    batch_size: 64,
    optimizer: {
      type: adam,
      beta_1: 0.9
    }
  },
  hyperopt: {
    sampler: bayesian,
    parameters: [
      {name: training.learning_rate,
       type: float,
       low: 1e-5, high: 1e-1,
       scale: log},
      {name: book_title.encoder,
       type: category,
       values: [transformer,
                rnn, cnn]},
      {name: book_title.num_layers,
       type: int,
       low: 1, high: 10}
    ]
  }
}

A B

C

Figure 4: Three examples of Ludwig configurations. A: a simple text classifier that includes additional structured
information about the author of the classified message. B: image captioning example. C: A detailed configuration
for a model that given the title and sales figures of a book, predicts it’s user score and tags. A and B show simple
configurations, while C shows the degree of control of each encoder, combiner and decoder, together with training and
preprocessing parameters, while also highlighting how Ludwig supports hyperparameter optimization of every possible
configuration parameter.
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In the end, Ludwig is both a modular and an end-to-end system: the internals are highly modular for allowing Ludwig
developers to add options, improve the existing ones and reuse code, but from the perspective of the Ludwig user, it’s
entirely end-to-end (including processing, training, hyperopt, and evaluation).

3.2.3 Similarities and differences

Both Overton and Ludwig, despite being developed entirely independently of each other, converged on similar design
decisions, in particular on the adoption of declarative configurations that include (albeit with a different syntax) both
the input data schema and a notion of the tasks models should solve in Overton and the analogous notion of input and
output features in Ludwig. Both systems have a notion of types associated with the data which inform parts of the
pipeline they build.

Where the two systems differ is in some assumptions, some capabilities and in what they focus on. Overton is more
concerned with being able to compile its models in various different formats, in particular for deployments, while
Ludwig has only one productionization route. Overton also allows for a more explicit way to define data-related aspects
like weak supervision and data slicing. Ludwig on the other hand covers a a wider breadth of use cases by virtue of the
compositionality of the ECD architecture, where different combinations of inputs and outputs can define different ML
tasks.

Despite the differences, both systems address some of the challenges highlighted in Section 2.3. Both systems
nudge developers towards making less decisions by automating part of the life-cycle (Desideratum 1) and towards
reusing models already available to them and analyze them thoroughly by providing both standard implementation
of architectures and evaluations that can also be combined in a more holistic way (Desideratum 2). The interfaces
and the use of data types and associated higher level abstractions (Desideratum 4) in both systems favor code reuse
(Desideratum 3) and addresses the expertise scarcity. Declarative configurations increase the speed of model iteration
(Desideratum 5) as developers just need to change details in the declaration instead of rewriting code with cascade
effects. Both systems also partially provide separation of interests (Desideratum 6): they separate between the system
developers adding new models, types and features and the users using the declarative interface.

4 What is next?

The adoption of both Overton and Ludwig in real-world scenarios by tech companies suggests that they are actually
solving at least part of the concrete problems those companies face and produce value. Despite that, we believe there
is substantial more value to be untapped by combining their strengths with the tighter integration with data of the
“data-first” era of declarative ML systems. This new wave of recent deep learning work has shown that with relatively
simple building blocks and AutoML, fine-control of the training and tuning process may no longer be necessary, thus
solving the main pain point that “data-first” approaches did not address and opening the door for a convergence towards
new, higher level systems that seamlessly integrate models training, inference and data.

In this regard, there are lessons that can be learned from computing history, by observing the process that led to the
emergence of general systems that replaced bespoke solutions:

• Amount of users. We believe even higher level abstractions are needed for ML to become not only more
widely adopted, but to end up being developed, trained, improved and used by people without any coding skill.
We believe that, to draw another analogy with database systems, we are still in the “Cobol” era of ML, and
that as “SQL” allowed the a substantially larger amount of people to write database application code, the same
will happen for ML.

• Explicit user roles. We expect not everyone interacting with a future ML system to be trained in ML, statistics,
or even computer science. Similarly to how databases evolved to the point that there’s a stark separation
between database developers implementing faster algorithms, database admins managing instances installation
and configuration and database users writing application code and final users obtaining fast answers to their
requests, we expect this role separation to emerge in ML systems.

• Performance optimizations. More abstract systems tend to make compromises either in terms of expressivity
or in terms of performance. Ludwig achieving state of the art and Overton replacing production systems
suggest that may be a false tradeoff already. Compilers history suggests a similar pattern: over time optimized
compilers could often beat hand-tuned machine code kernels, although the complexity of the task may have
suggested otherwise initially. We believe developments in this directions will make it so that bespoke solutions
would likely be limited to really specific tasks in the fat part of the (growing) long tail of ML tasks within an
organization, where even very minor improvements are extremely valuable, similarly to the mission critical
use cases where today one may want to write assembly code.
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• Symbiotic relationship between systems and libraries. We believe the will be more ML libraries in the
future and that they will co-exist and help improving ML systems in virtuous cycle. In the history of computing
this has happened over and over, with a recent example being the emergence of full-text indexing libraries such
as Lucene filling the feature gap most DBMSs had at the time, with Lucene being used in bespoke applications
first and later being used as the foundation for complete search systems like ElasticSearch and Solr and being
finally integrated in DBMSs like OrientDB, GraphDB and others.

Some challenges are still open for declarative ML systems: they will have to demonstrate to be robust with respect to
future changes in machine learning coming from research, supporting diverse training regimes and showing that the
types of task they can represent encompasses a large fraction of practical uses. The jury is still out on this.

To conclude, we believe that technologies change the world when they can be harnessed by more people than the
ones who can build them, so we believe the future of machine learning and how impactful it will be in everyone’s life
ultimately depends on the effort of putting it in the hands of the rest of us.
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