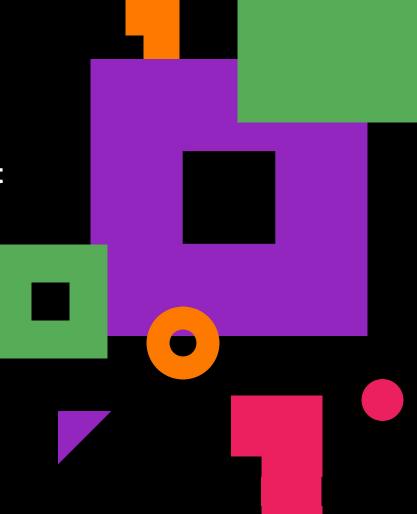
<u>Customer</u> Obsession <u>Ticket</u> Assistant

Improving Uber Customer Support with Natural Language Processing and Deep Learning

Piero Molino | Al Labs Huaixiu Zheng | Applied Machine Learning Yi-Chia Wang | Applied Machine Learning



Main Takeaways

COTA v1: classical NLP + ML models

Faster and more accurate customer care experience
Million \$ of saving while retaining customer satisfaction

COTA v2: deep learning models

- Experiments with various deep learning architectures
- 20-30% performance boost compared to classical models

COTA <u>Blog Post</u> and <u>followup</u>, <u>KDD paper</u>

Secure https://eng.uber.com/cota/		🖈 🔤 🖬 🖬 Z 🕒 🔝 🖉
	Uber Engineering Updates: email address SUBSCRIBE	
UBER Engineering	Q Search Articles Facebook Twitter	Join the Team Uber Open Source
CATEGORIES Architecture Al Uber Data Open Source Mobile General Engineering Team Profile Culture	COTA: Improving Uber Customer Care with NLP & Machine Learning By Huaixiu Zheng, Yi-Chia Wang, & Piero Molino January 3, 2018	
	Data Sources Preprocessing Feature Engineering ML Algorithm Predictions Ticket Information Ticket Text - Tokenization - Lowerceasing Similarity - Tokenization - Lowerceasing - LSI - Cosine Similarity Pointwise Ranking Solution	

Motivation and Solution

Complexity of Customer support @Uber

COTA v1: Traditional ML / NLP Models

Multi-class Classification vs Ranking

COTA v2: Deep Learning Models

Deep learning architectures

COTA v1 vs COTA v2

Motivation and Solution

Complexity of Customer support @Uber COTA v1: Traditional ML / NLP Models Multi-class Classification vs Ranking

COTA v2: Deep Learning Models

Deep learning architectures

COTA v1 vs COTA v2

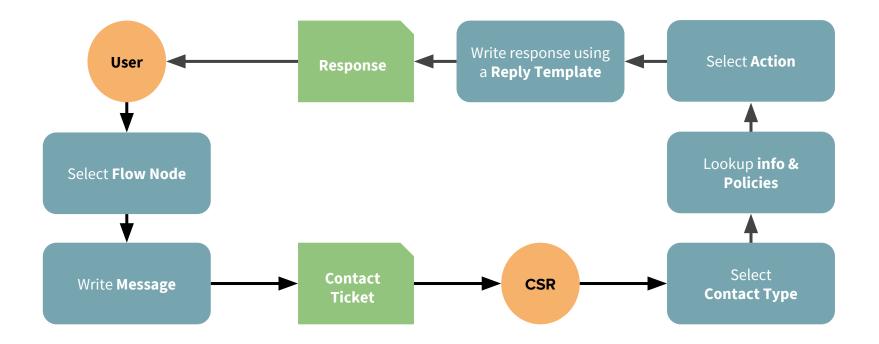
What is the challenge?

As Uber grows, so does our volume of support tickets

Millions of tickets from

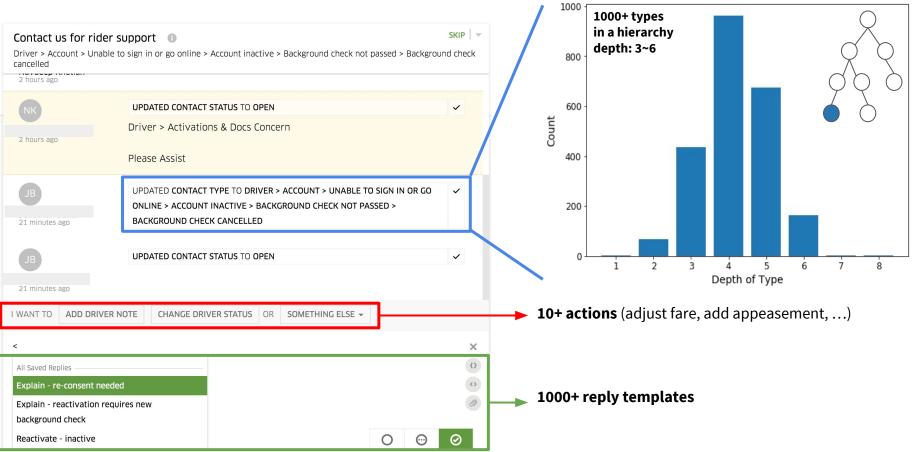
riders / drivers / eaters **per week** Thousands of different types of issues users may encounter

Uber Support Platform



What is the challenge?

And it is not easy to solve a ticket



Motivation and Solution

Complexity of Customer support @Uber

COTA v1: Traditional ML / NLP Models

Multi-class Classification vs Ranking

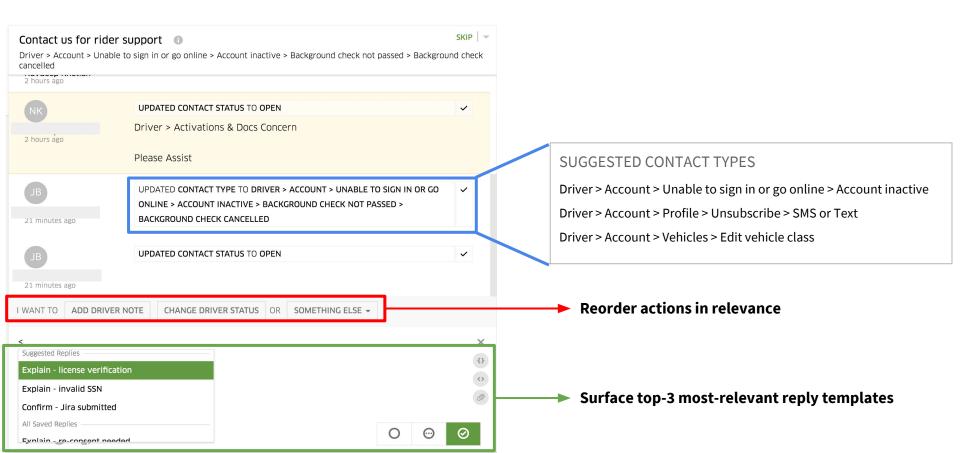
COTA v2: Deep Learning Models

Deep learning architectures

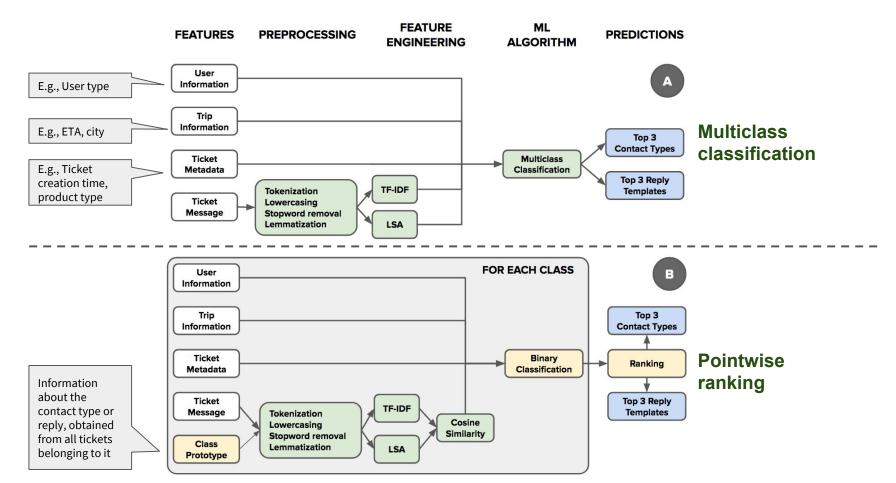
COTA v1 vs COTA v2

COTA v1: Suggested Resolution

Machine learning models recommending the 3 most relevant solutions



COTA v1 Model Pipeline

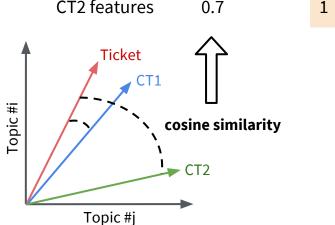


From Classification to Ranking

Pointwise Ranking Multi-class Classification Tickets Label (CT1, CT2) Tickets Features Type Features Sim (t, CT) Label (0, 1) Features t1 features CT1 features 0.8 1 t1 features CT1 t1 features CT2 features 0.1 0 CT2 t2 features t2 features CT1 features 0.2 0 t2 features CT2 features 1 0.7 Ticket Ranking allows us to include features of candidate

Ranking allows us to include **features of candidate types** and **similarity features** between a ticket and a candidate type

Model: **Random Forest** with hyperparameters optimized through **grid search**



Performance Comparison

6% absolute (10% relative) improvement

Hits@3: any of the top 3 suggestions is selected by CSRs

Motivation and Solution

Complexity of Customer support @Uber

COTA v1: Traditional ML / NLP Models

Multi-class Classification vs Ranking

COTA v2: Deep Learning Models

Deep learning architectures

COTA v1 vs COTA v2

COTA v2: Deep Learning Architecture

Input Encoders

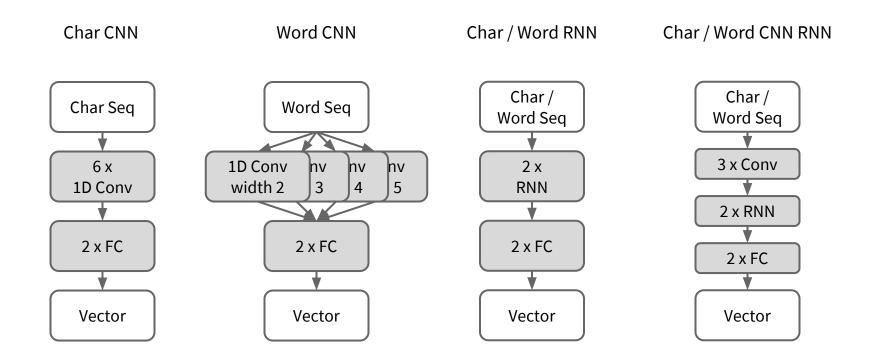
Text Text Encoder Decoder features features Categorical Categorical Decoder Encoder features features Numerical Numerical Encoder Decoder features features Combiner **Binary** Binary Encoder Decoder features features Set Set Encoder Decoder features features Sequential Sequential Decoder Encoder features features

Combiner

Output Decoders

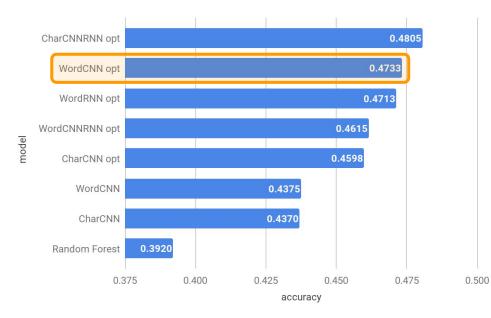
Generic architecture, **reusable** in many different applications. We are considering open-sourcing it!

COTA v2: Text Encoding Models



Which text encoder?

Hyperparameter search for contact type classification



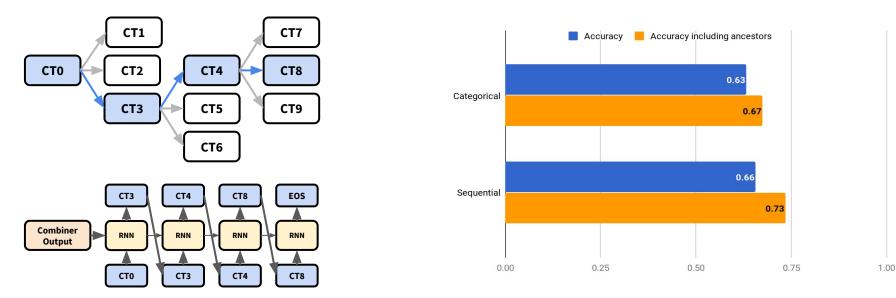
Model	Validation accuracy	Training time per epoch in minutes
CharCNNRNN opt	0.4805	35
WordCNN opt	0.4733	4
WordRNN opt	0.4713	17
WordCNNRNN opt	0.4615	12
CharCNN opt	0.4598	5

WordCNN is the best compromise between performance and speed

20%+ over Random Forest used in COTA v1 and ~10x faster than CharCNNRNN

Sequence Model for Type Selection

Predict the sequence of nodes instead of leaf node



Example: Driver > Trips > Pickup and drop-off issues > Cancellation Fee > Driver Cancelled

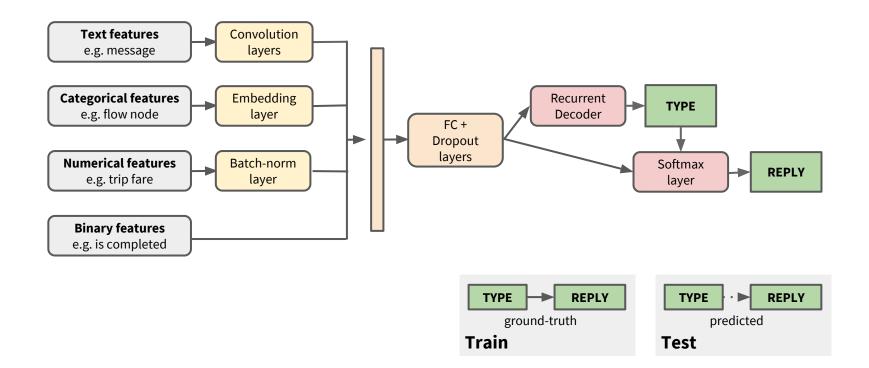
Use a Recurrent Decoder to predict sequences of nodes in the contact type tree

Pick the last class before <eos> as prediction

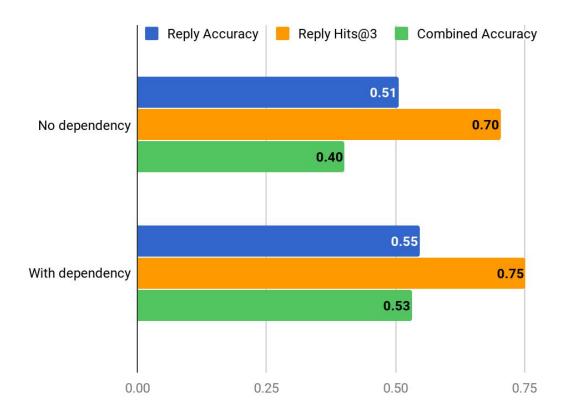
Model makes more reasonable mistakes

Final Architecture

Multi-task sequential learning



Effect of Adding Dependencies Between Tasks



Adding the dependency from Type to Reply **improves accuracy**

It also improves a lot the **coherence** between the two models, **increasing combined accuracy** consistently

Combined accuracy computed requiring both Type and Reply model to be **correct at the same time**

Outline

Motivation and Solution

Complexity of Customer support @Uber

COTA v1: Traditional ML / NLP Models

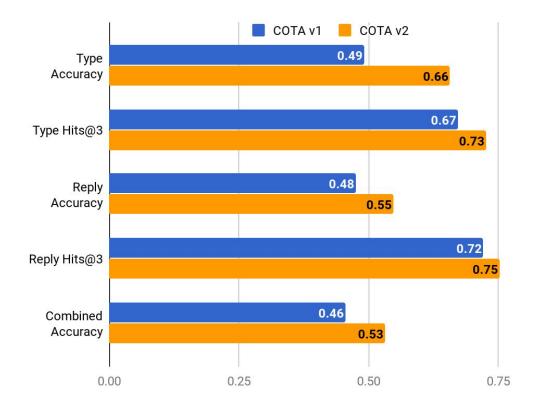
Multi-class Classification vs Ranking

COTA v2: Deep Learning Models

Deep learning architectures

COTA v1 vs COTA v2

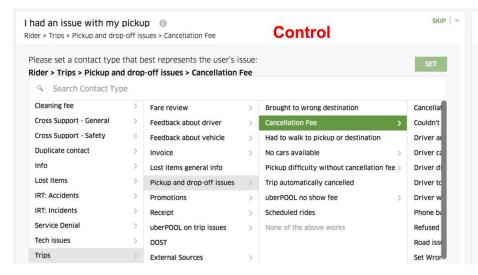
COTA v1 vs. COTA v2 offline comparison



COTA v2 is **consistently more effective** than COTA v1 on **all metrics** for **both models**

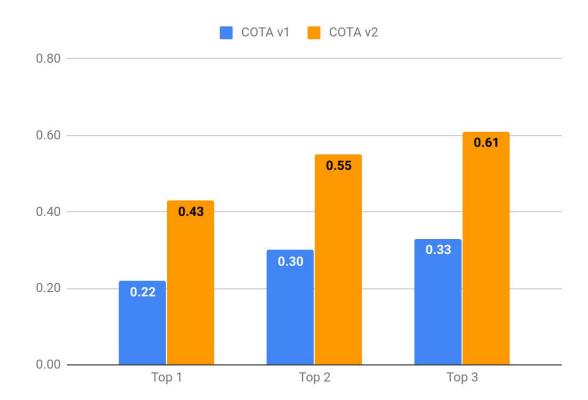
The combined accuracy in particular shows an absolute **~+9%** (relative **+~20%**)

COTA v1 vs. COTA v2 A/B Test



I had an issue with my pi Rider > Trips > Pickup and drop-o	Treatment		
	drop-o	st represents the user's issue: iff issues > Cancellation Fee	SET
Rider > Trips > Pickup and	d drop	-off issues > Cancellation Fee > Driver c -off issues > Cancellation Fee > Cancella -off issues > Cancellation Fee > Couldn't	tion policy
DOST		Brought to wrong destination	Cancellation policy
External Sources	>	Cancellation Fee >	Couldn't find or get to driver
Fare review	>	Had to walk to pickup or destination	Driver arrived too early
Feedback about driver	>	No cars available >	Driver cancelled
Feedback about vehicle	>	Pickup difficulty without cancellation fee $\!>$	Driver didn't answer phone
Invoice	>	Scheduled rides	Driver took too long
Lost items general info		Trip automatically cancelled	Driver went to a totally different place >

COTA v1 vs. COTA v2 A/B Test

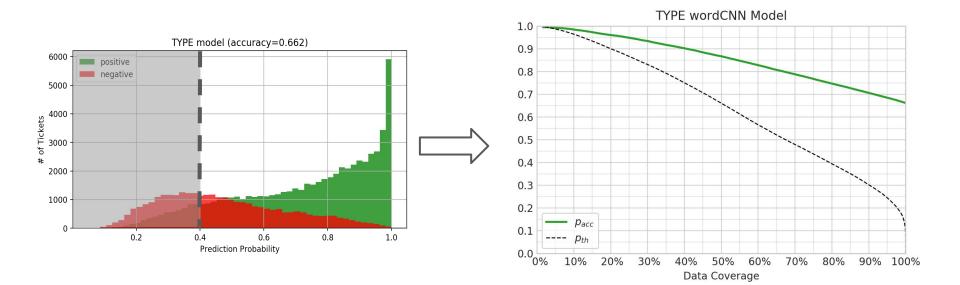


COTA v2 is **20-30% more accurate** than COTA v1 in online A/B tests

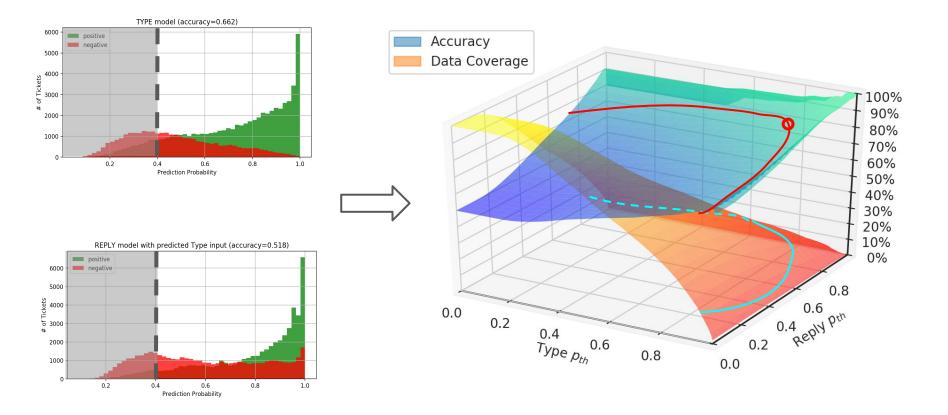
COTA v1 reduces handling time of ~8%, while COTA v2 provides an additional ~7% reduction, more than ~15% overall reduction

Statistically significant customer satisfaction improvement

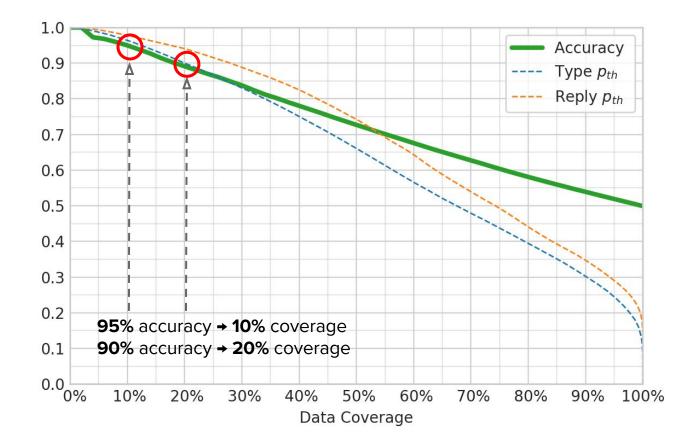
Threshold on Type Model Confidence



Threshold on Both Models' Confidence



Coverage vs. Maximum Accuracy



Conclusions

Using NLP & ML COTA makes customer care experience **faster** and **more accurate** while **saving Uber millions** of \$ Moving from traditional to deep learning models, we observe a substantial **performance boost** (up to **30%**)

Using intelligent suggestions we were able to **reduce ticket handling time without impacting customer satisfaction**

COTA Team

Cross-functional collaboration

AI Labs Applied Machine Learning Customer Obsession Michelangelo Sensing and Perception

UBER

Proprietary and confidential © 2018 Uber Technologies, Inc. All rights reserved. No part of this document may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from Uber. This document is intended only for the use of the individual or entity to whom it is addressed and contains information that is privileged, confidential or otherwise exempt from disclosure under applicable law. All recipients of this document are notified that the information contained herein includes proprietary and confidential information of Uber, and recipient may not make use of, disseminate, or in any way disclose this document or any of the enclosed information to any person other than employees of addressee to the extent necessary for consultations with authorized personnel of Uber.

