
COTA: Improving the Speed and Accuracy of Customer Support
through Ranking and Deep Networks

Piero Molino
Uber AI Labs

San Francisco, California
piero@uber.com

Huaixiu Zheng
Uber Technologies

San Francisco, California
huaixiu.zheng@uber.com

Yi-Chia Wang
Uber Technologies

San Francisco, California
yichia.wang@uber.com

ABSTRACT
For a company looking to provide delightful user experiences, it is
of paramount importance to take care of any customer issues. This
paper proposes COTA, a system to improve speed and reliability
of customer support for end users through automated ticket clas-
sification and answers selection for support representatives. Two
machine learning and natural language processing techniques are
demonstrated: one relying on feature engineering (COTA v1) and
the other exploiting raw signals through deep learning architec-
tures (COTA v2). COTA v1 employs a new approach that converts
the multi-classification task into a ranking problem, demonstrating
significantly better performance in the case of thousands of classes.
For COTA v2, we propose an Encoder-Combiner-Decoder, a novel
deep learning architecture that allows for heterogeneous input and
output feature types and injection of prior knowledge through
network architecture choices. This paper compares these models
and their variants on the task of ticket classification and answer
selection, showing model COTA v2 outperforms COTA v1, and
analyzes their inner workings and shortcomings. Finally, an A/B
test is conducted in a production setting validating the real-world
impact of COTA in reducing issue resolution time by 10 percent
without reducing customer satisfaction.

CCS CONCEPTS
• Computing methodologies → Natural language process-
ing; Machine learning; Neural networks;
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1 INTRODUCTION
Customer support has become an integral part of most compa-
nies. In fact, many companies have customer service departments
with dedicated representatives/agents to provide support and help
customers resolve issues they encounter. Prompt and accurate re-
sponse to a request is essential for customer satisfaction and reten-
tion. Uber's Customer Obsession team is committed to making the
customer experience as quick, easy, and accessible as possible.

When customers report problems, it is important to route them
to the best possible resolution in a timely manner. Nevertheless,
there is often a large amount of situational information associated
with each customer ticket, which can be time-consuming to digest
and synthesize into an identifiable issue type and corresponding
solution for customer support representatives (CSRs). Moreover, the
diversity of ways a customer can describe an issue associated with

a ticket further complicates the ticket resolution process. Finally, as
a company scales, support agents must be able to handle an ever-
increasing volume and diversity of support tickets. For example,
Uber receives hundreds of thousands of tickets every day on the
platform across 400+ cities worldwide. The issues can range from
technical errors and fare adjustments, to lost items. Ensuring that
agents are empowered to resolve tickets as accurately and quickly
as possible is the key.

Priorwork has explored the challenge of issue resolution utilizing
data mining and machine learning techniques to partially automate
the resolution process [e.g., 9, 10, 14, 23]. Hui and Jha [14] applied
data mining methods to extract customer-related information from
both unstructured text data and structured databases, which CSRs
employ for decision making. In [9], the authors built a ML classifier
to identify emotional emails sent by customers and suggested that
the classifier can be used to automatically route these emails to
specialized representatives. Similarly, existing research in spoken
dialogue systems aims to build models to detect intent and extract
named entities for call classification and routing [e.g., 10, 25, 29].

In contrast to prior work, which mostly focuses on customer
information retrieval and intent detection for routing, this work
investigates techniques to directly help CSRs improve their speed
and accuracy, which in turn leads to better customer experiences.
To accomplish this, we build COTA (Customer Obsession Ticket
Assistant), an intelligent system based on machine learning (ML)
and natural language processing (NLP) techniques that is integrated
with Uber’s customer support platform. The system provides CSRs
with suggested ticket classifications and answers based on ticket
content and additional context such as relevant trip information.

In this paper, we share our experiences building COTA and
report empirical results after successfully integrating it with Uber's
customer support platform. The main contributions of this work
are as follows:

• Proposing a new method to convert a multi-classification
problem to a ranking one, which significantly improves the
performance of feature-engineered classical ML algorithms,
especially when there are thousands of classes. The new
method is introduced in Section 3.

• Introducing Encoder-Combiner-Decoder, a novel deep learn-
ing architecture that allows for heterogeneous input and
output types and the injection of prior knowledge in the
form of architecture choices. The new architecture is intro-
duced in Section 4.

• Conducting comprehensive experiments to compare differ-
ent models and uncover their underlying mechanisms and
shortcomings. Experiments are discussed in Section 5.
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Figure 1: The COTA system architecture is composed of a
four-step workflow.

• A/B testing COTA in production to show that it enables quick
and efficient issue resolution and improves key business
metrics. Business impact is discussed in Section 5.8.

2 INTELLIGENT SYSTEM FOR CSRS
As one of the world’s largest ridesharing providers, Uber receives
hundreds of thousands of support tickets from users every day. Until
COTA, the process of resolving a ticket has been mostly manual. A
typical workflow for ticket resolution involves two steps: contact
type identification and solution selection.

When a CSR opens a ticket, their first step is to determine what
it is about (e.g. wrong food delivered or trip cancellation). We refer
to this task as contact type identification (similar to intent de-
tection in dialogue systems research). With thousands of potential
contact types and a deep tree to navigate through, reducing the
amount of time a CSR spends identifying a ticket's type is important
because it also decreases the time customers have to wait for their
issue to be solved.

Once a contact type is chosen, the next step is to select the right
solution and reply. Specifically, a customer service team usually
maintains a bank of reply templates from which agents can select
the correct one for each contact. This step of finding the proper
solution and selecting the appropriate reply is also time consuming
since there are thousands of possible solutions to choose from and
each contact type has a different set of protocols and solutions it is
associated with. We refer this task as reply template selection.

2.1 COTA System Architecture
To solve both contact type identification and reply template selec-
tion, Customer Obsession Ticket Assistant (COTA) is designed to
help our CSRs improve their speed and accuracy. Built on top of
our support platform, COTA is comprised of two ML models that
suggest the three most likely contact types and reply templates
to CSRs for each support tickets based on its content and context.
These two models are the type model and the reply model, re-
spectively. Fig. 1 depicts the general COTA architecture, which
follows a four-step flow:

(1) Once a new ticket is issued by the user, the back-end service
collects all relevant features of the contact.

(2) The back-end service then sends these features to the ML
models, receives back predictions and stores them.

(3) Once a CSR opens a given ticket, the front-end service trig-
gers the back-end service to check if there are any updates
to the ticket. If there are no updates, the back-end service
will return the stored predictions; if there are updates, it will
fetch the updated features and go through Step 2 again.

(4) The top three ranked predictions are suggested to agents;
from there, agents make a selection and resolve the sup-
port ticket. The decision of returning the top three is a UX
decision.

2.2 Model Features
There are four main sources of information often referenced by
CSRs when deciding contact type and reply template of a ticket:
ticket message and metadata, user-level as well as trip-level infor-
mation. These sources of user and trip information contain critical
ingredients for contact type identification and reply template selec-
tion, and as such serve as features for training the model.

Ticket message. The text written by the customer when sub-
mitting a ticket. A detailed description of how ticket mes-
sages are processed and converted into features through an
NLP pipeline is given in Section 3.1.

Ticket metadata. Every support ticket comes with a set of
metadata, such as ticket creation time and product type (e.g.,
Uber Eats, UberPool and UberX).

User information. Information about the user sending the
ticket, i.e. user type (e.g., driver, rider or eater), can provide
important signals for both contact type identification and
reply template selection. For instance, only eaters would sub-
mit a ticket related to the contact type wrong food delivered,
while the country of the user may affect the policies to solve
the tickets, and consequently the appropriate reply template
to use.

Trip information. For tickets related to trips, trip-level infor-
mation can be very helpful in predicting contact types, such
as cancellation and mistimed trips. Examples of trip features
are city, estimated time of arrival and trip status.

3 COTA V1: TRADITIONAL MACHINE
LEARNING MODELS

The first version of COTA (COTA v1) is built with topic-modeling-
based traditional NLP and ML techniques leveraging a mixture of
text, categorical, and numerical features. In order to extract the text
features, an NLP pipeline processes incoming ticket messages. This
section describes each component of the pipeline shown in Fig. 2.

3.1 NLP Preprocessing
The first step is to analyze text at the word-level and use topic
modeling to better understand the meaning of text data. The text
is cleaned by removing HTML tags. Next, the message’s sentences
are tokenized and stop-words are removed. Then, each word is
lemmatized to convert different inflected forms into the same base
form. Finally, the documents are converted into a bag of words,
forming a dictionary.
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Figure 2: The NLP pipeline built for COTA v1: a) topic vec-
tors are directly used by the classification algorithm and b)
cosine-similarity features are engineered and used by the
pointwise-ranking algorithm.

Figure 3: Examples of topics extracted by LSA from text data
in customer support tickets.

To understand user intent, topic modeling is performed on the
bag of words after preprocessing. First, TF-IDF (term frequency-
inverse document frequency) [22] is used to obtain a sparse vec-
tor representation. Furthermore, topics are extracted through La-
tent Semantic Analysis (LSA) [18], that returns a dense vector for
each ticket message. We perform Truncated-SVD, that decomposes
our term-document matrix T obtained from ticket messages into
T ≈ UkΣkV

⊤
k , choosing the number of largest singular values k

in the Σ matrix by keeping at least 90% of the variance of the
term-document matrix. By doing so, we end up with about 200 di-
mensions. Fig. 3 shows examples of the topics extracted by LSA, and
they are meaningful topics with respect to Uber’s customer support
ticket data, e.g. city related topics, rating related ones, refunds, fare
adjustments and so on.

3.2 Feature Engineering
Two different approaches of using topic-modeling-based vector
representations are tested.

The first approach is to directly leverage the topic vectors of
ticket messages as features to perform downstream classifications
in type and reply models, as shown in Fig. 2(A). However, this direct
approach suffers from a high dimensionality of the vectors.

The second approach uses the vectors in an indirect fashion
by performing further feature engineering by computing cosine
similarity features, as illustrated in Fig. 2(B). Historical tickets asso-
ciated with each contact type and reply template are collected and
a bag-of-words representation is obtained for each of them. The
bag-of-words representation of each class i (either contact type and
reply template) is transformed into a LSA vector, which we use as
a prototype vector pi . The bag of words of each incoming ticket
message j is projected in the same semantic space in order to obtain
a vector tj . The cosine similarity score si j between each pi and tj
is then computed and represents the similarity between class i and
ticket j. The same process is repeated with TF-IDF vectors in place
of LSA ones. Doing so reduces the feature space from hundreds
of dimensions of the original vectors to just a handful similarity
features.

Similarity feature collection is further expanded by using other
class specific information explicitly. For example, in order to obtain
an additional prototype, we can use the actual textual content of
the reply template. This adds two additional similarity features, one
obtained with TF-IDF vectors and the other one with LSA ones.

3.3 Algorithms: Multi-Class Classification vs.
Pointwise-Ranking

Given the two approaches to extract features from text described
above, two different algorithms are trained on the tasks of contact
type identification and reply template selection.

The first one formulates the tasks as a multi-class classification
problem where the contact types and reply templates are targets.
The model takes in TF-IDF and LSA vectors together with the cate-
gorical and numerical features of the other feature families and use
them to predict the target class. The pipeline for this straightfor-
ward approach is shown in Fig. 2(A).

In order to leverage the engineered cosine-similarity features,
a pointwise-ranking [19] algorithm (Fig. 2(B)) scores each ticket-
class pair and then ranks classes based on the score. Specifically,
a subset of all ticket-class pairs is sampled: the matching one is
given a positive label (1) and a random subset of non-matching
ones are given a negative label (0). The target to predict is the
label Yi j (0/1) for each pair of class i and ticket j. Using the cosine
similarity features as well as categorical and numerical features, a
binary classification algorithm is built to classify whether or not
each ticket-class combination matches. Once the algorithm scores
each possible pair, classes are ranked based on their scores and the
top-ranked ones are selected.

In COTA v1, both the multi-class classification and point-wise
ranking algorithms use the same RandomForest algorithm [12] for
learning to predict the correct class of each ticket.

The two approaches are compared in an experiment described
in Section 5.4.
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Figure 4: Encoder-Combiner-Decoder Architecture depic-
tion.

4 COTA V2: DEEP LEARNING
ARCHITECTURE

In recent years, deep learning models have been heavily adopted for
several NLP tasks including syntactic [3] and semantic parsing [20],
semantic role labeling [21], recognizing textual entailment [24]
and named entity recognition [7], leading to performance improve-
ments. Moreover, the same architectures employed for these tasks
have been adopted also for end-to-end applications like summariza-
tion [6], machine translation [2], building dialogue systems [11]
and, more importantly for our goals, text categorization [16].

Trying to leverage these models is a natural step for COTA, as
the tasks to automate can be casted as text classification. In [30]
the authors have already shown how deep learning architectures
can be effective in the presence of big datasets. The main difference
with respect to state-of-the-art text classification architectures, is
that they are explicitly designed to deal with textual inputs, while
additional input features such as metadata, trip as well as user
related information are available in COTA. To incorporate these
extensive features, COTA v2 extends the wide-and-deep approach
described in [4]. Thewide-and-deep approach consists in combining
other features with the text ones by concatenating them before the
final layer of the architecture. COTA v2 combines this idea with
multi-task learning, that accommodates ways to train a model to
learn to predict multiple outputs by optimizing losses for all the
different outputs at the same time. In [7], the authors showed how
trainingmodels for related tasks in this fashion can lead to improved
performances in all tasks.

4.1 Encoder-Combiner-Decoder Architecture
The combination of deep-and-wide with multi-task learning in-
spired losses forms the basis of a new general architecture intro-
duced in this paper, the Encoder-Combiner-Decoder (ECD), de-
picted in Fig. 4. In the encoder part of the architecture, each single
input feature is encoded by a sub-part of the model, depending on
its type. More formally each encoder is a function et (ϕi (x ))(ϕi (x))
whereϕi (x) is the i-th input feature and t(ϕ(x)) is the type of feature.
For instance, text features can by encoded by a Character-Based
CNN or by a Bidirectional RNN on the word sequence, categorical
features can be encoded through a linear projection into an embed-
ding space, binary feature can be encoded with one single number

and numerical features can be encoded through a single neuron
that acts as a learned scaling factor. Each of these different encoders
outputs a vector encoding for the input feature they deal with. In
the combiner part, those vectors are concatenated as they are in
the wide-and-deep approach, but the concatenation is optionally
followed by fully connected layers that can learn some non-linear
combination of the representations obtained so far. The combiner
is needed in any circumstance when there is more than one input
feature, like in our case, but could be skipped if there’s more there
is only one input feature. A combiner is defined as a function c(x)
so that:

c(x) = f ([et (ϕ0(x ))(ϕ0(x)), . . . , et (ϕn (x ))(ϕn (x))])

, where [. . . ] is the concatenation operator, n is the number of input
features, and f is a multi-layer perceptron. Finally, in the decoder
part, different output features have different “heads”, with each of
them predicting a different output feature depending on their type.
Each output decoder can contain an arbitrary number of additional
fully connected layers between the output of the combiner and the
layer responsible for the prediction. This makes it possible to have
a multi-task model with weights shared among all the tasks up to
the combiner and have a set of weights that are task-specific for
increased flexibility. Each decoder is a function d that returns a loss
and is defined as:

dϕi (x )(x) = fϕi (x )(c(x))

, where f is again a multi layer perceptron and there could be dif-
ferent f s for different output features. Categorical output features
are treated as a multi-class classification task: they use the output
of the combiner and pass it through softmax layer, and return a
categorical cross entropy loss. Numeric output features are treated
as a regression task: they use the output of the combiner to predict
a single value, and return a mean squared error loss. Binary output
features are treated as a binary classification task: they use the out-
put of the combiner as input for a layer with a logistic activation,
and return a binary cross entropy loss. The sum of all the losses
coming from the different output features is optimized through
any variant of stochastic gradient descent in multi-task learning
fashion. The final loss that is optimize is the weighted sum of all
the losses of the output features and is defined as:

L(x) =
∑

i ∈o(x )
widϕi (x )(x)

, where o(x) is the set of indices of output features, andwi is a user
defined weight for the specific output feature.

The ECD architecture provides three key benefits. It directly
incorporates all raw input features, eschewing the need for prepro-
cessing outside of mapping textual and categorical features into
integers, as well as learning a single model to predict both contact
types and reply templates. Finally, the architecture enables an easy
method for swapping and comparing different encoders. As a result,
six diferent encoders are implemented for textual features: CNN,
RNN and CNN followed by RNN, each one working on characters or
on words, inspired by [16, 27, 30]. Each of them can be parametrized
independently, specifying the number of layers, the size of convo-
lutional filters of each layer and how many stacked RNNs to use,
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Figure 5: Example of path in the contact type hierarchy used
as target sequence. CT stands for contact type. The contact
type to predict is CT8 and the target sequence is [CT0, CT3,
CT4, CT8].

Figure 6: Example of a sequence decoder predicting a path
in the contact type tree.

if they should be bidirectional, and their type (Simple RNN [8],
LSTM [13] or GRU [5]) among many other hyperparameters.

We are going to release ludwig, an open source toolbox imple-
menting the ECD architecture.

4.2 Injecting Prior Knowledge in the
Architecture

The ECD architecture makes it possible to further improve model
performance by injecting prior knowledge about each task directly
at the model architecture level.

4.2.1 Predicting paths in a tree. The first way to inject prior
knowledge deals with the decoder for predicting contact types. As
previously described, contact types are organized in a hierarchy,
but are treated as independent classes in COTA v1. In COTA v2
the hierarchical nature of the contact types is exploited directly by
predicting a path in the tree that leads to the target contact type
rather than predicting the contact type directly, as shown in Fig. 5.
This is accomplished by adding an additional sequential decoder,
similar to what is used in sequence-to-sequence models [26] for
machine translation, where the target sequence is the sequence of
contact type nodes that describes a path in the tree from the root
to the target contact type, such that the last node in the sequence
is the actual target contact type. The node prediction at each step
is used as input at the following step of sequence prediction, as
depicted in Fig. 6. The loss for this output feature is the sum of the
cross entropy losses at each step of the sequence generation, while
only the last predicted contact type in the sequence is used when
assessing its accuracy.

Interestingly, not all model mistakes are equal in terms of time
it takes for CSRs to recover from errors. In fact, different model
architectures may gracefully degrade and provide help for CSRs
even if the answer is not exactly correct. For instance predicting

[{name: OF1,
  dependencies: [OF2]},
 {name: OF2,
  dependencies: []},
 {name: OF3,
  dependencies: [OF2, OF1]}]

Combiner
Output

OF2
Decoder

OF3
Decoder

OF1
Decoder

OF2
Loss

OF1
Loss

OF3
Loss

Combined
Loss

Figure 7: Decoder dependency example. OF stands for out-
put feature.

the parent of the correct contact type is better than predicting a
contact type in a completely different part of the hierarchy because
the CSRs will be just one click away from the correct solution. In
contrast, navigating through all the tree to select the correct contact
type consumes a considerably larger amount of time. Moreover,
searching for solutions using a beam search could even improve
handling time, providing an efficient approximation of the k most
likely paths rather than the most likely single path. The hypothesis
that a recurrent decoder could make more reasonable mistakes is
directly tested in Section 5.5.

4.2.2 Adding decoder dependencies. The second way to inject
prior knowledge deals with the logical dependency between the
two tasks we try to solve. Contact type identification is logically
the first step that CSRs undergo in the process of solving a ticket,
and depending on the outcome, they decide what reply template
to use. From the model perspective, having access to information
about the contact type of the ticket is beneficial for suggesting the
correct reply template CSRs should use.

As different decoders can have a set of weights that is specific to
output feature they try to predict, the output of the contact type
decoder is injected as an additional input to the reply template
decoder, concatenating it with the output of the combiner. More
generally, in the ECD architecture allows for dependencies between
output features. The dependencies must form a directed acyclic
graph for the computational graph to be built as when building
it the outputs of the decoders of all the output features that the
current output feature is dependent on is concatenated with the
output of the combiner. This concatenation is used as the input to
the current decoder, as exemplified in Fig. 7.

The hypothesis is that adding dependencies among output fea-
tures would help in two ways: a) the overall performance in predict-
ing output features with dependencies should improve due to to the
prior knowledge injection and b) the outputs of the decoders will
be more coherent with each other, i.e. the number of samples where
all output predictions are correct as opposed to the number of sam-
ples where only a subset of output predictions is correct should be
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higher, even in the case of equivalent performance on each single
output prediction. Both hypotheses are tested in Section 5.5.

5 EXPERIMENTS AND RESULTS
5.1 Goals and Evaluation Metrics
The goals of the experiments are twofold: to evaluate both the
quality of the predictions obtained from these models and also how
the use of the models impacts business metrics.

For the first goal, we evaluate models in an offline experiment in
terms of their Accuracy and Hits@3 on both contact type identifica-
tion and reply template selection. The decision to use Hits@3 as a
metric is rooted in the UX decision to show the top three model pre-
dictions to CSRs, so the number correct predictions we can provide
among the ones actually shown to our users is assessed. Moreover,
the models should to return correct predictions on both tasks at the
same time, so the accuracy of predicting the correct contact type
and the correct reply template for the same tickets is considered.

The business metrics that relate directly to how quickly and
seamlessly we are able to resolve customer support issues, thereby
improving the customer support experience, are the most important
ones. The goal is to provide them with a fast customer support ex-
perience that solves their issues. For this reason, the handling time
of each ticket and overall customer satisfaction is tracked through
surveys. The hypothesis is that when using COTA, CSRs will be
faster in handling tickets without degrading customer satisfaction.
This hypothesis is tested with an online experiment, where A/B
testing is performed on a subset of our English-speaking CSRs,
using as treatment the intelligent suggestions generated by our
COTA system in contrast to control with no suggestions.

5.2 Dataset
Uber’s historical customer support data is used to train and evaluate
the model performance. As mentioned before, the input features
include ticket message, ticket metadata, user-level information, and
trip-level information. The target variable for the task of contact
type identification is the contact type ID, while for the task of reply
template selection, the predicted contact type is used as an addi-
tional input, and the target variable is the reply template ID. About
3M tickets were collected and split randomly into train (2.8M), vali-
dation (94K) and test (94K) sets. The dataset contains thousands of
different contact types and reply templates, exhibiting a long-tail
distribution. Contact types in particular are structured in seven
levels deep hierarchy. Ticket messages are truncated to 1024 char-
acters, as only 0.001% of them being longer and the majority of
them concentrating around 250 characters.

5.3 Hyperparameters
To find the best hyperparameters for each model, a hyperparameter
search is conducted, selecting hyperparameter combinations based
on model accuracy for a validation set.

For COTA v1 models, a grid search on the hyperparameters
of the Random Forest was run to find the following optimal set
: estimators: 100, max depth: 100, max features: sqrt(#f eatures),
min samples leaf: 50.

For COTA v2 models, the hyperparameter search is more com-
plex, as different text encoders needed a completely different set of

Table 1: Performance on the validation set of the best hy-
perparameter setting for eachmodel using different text en-
coders. The reportedminutes are relative to a full validation
set evaluation. CT stands for contact type, RT stands for re-
ply template, Comb. stands for Combined.

Encoder CT Acc RT Acc Comb. Acc Min

Char C-RNN 0.6505 0.5155 0.5024 17.5
Word CNN 0.6433 0.5099 0.4960 2
Word RNN 0.6413 0.5096 0.4971 8.5

Word C-RNN 0.6315 0.4999 0.4841 6
Char CNN 0.6298 0.4990 0.4815 2.5
Char RNN 0.6262 0.4972 0.4767 36

hyperparameters. A parallel random search is performed, cutting at
100 different configurations for each different encoder architecture.
Performance and speed are reported in Table 1. There is a relatively
small performance spread between the best and worst hyperpa-
rameter combinations of each encoder, with the worst performing
encoder (Char RNN) obtaining just 2% lower accuracy than the
best performing (Char C-RNN). In the end, Word CNN was chosen
as text encoder as it performs less than 1% worse than the Char
C-RNN, while being approximatively 9 times faster during both
training and prediction.

The best Word CNN model has 256 dimensional word embed-
dings and 4 parallel 1D convolutional layers of size, respectively, 2,
3, 4 and 5 with 512 filters each. All categorical features were em-
bedded with 256 dimensional embeddings. The combiner does not
have fully connected layers, while the two decoders had two fully
connected layers of size 512 and 256 respectively. Each numeric fea-
ture is encoded using only a batch norm [15] layer. Fully connected
layers interleaved by dropout layers with a dropout probability of
0.35. The loss is optimized with Adam [17] using a learning rate of
0.00025 and a batch size of 256.

5.4 COTA v1: Classification vs. Ranking
Experiments on COTA v1 compare multi-class classification and
pointwise-ranking algorithms on the same dataset and the same
optimized hyperparameters. The results are shown in Table 2.

The ranking algorithm outperforms the classification algorithm
significantly on both type identification and reply selection, as mea-
sured by the metrics of accuracy, Hits@3 and combined accuracy of
the two tasks. In particular, for the contact type identification, the
ranking improves accuracy by more than ∼3% and Hits@3 by ∼6%.
For the reply template selection, the improvement by obtained by
ranking algorithm is much more pronounced: ∼11% on accuracy
and ∼19% on Hits@3. This can be attributed to the fact that in the
ranking framework for reply template selection, the meta text infor-
mation (the content) of reply templates is injected directly into the
cosine-similarity feature engineering. As expected, it significantly
boosts the model performance compared to classification. As a re-
sults of the improvements to both type and reply models, ranking
algorithm has a much stronger performance on the overall accuracy
of both tasks: ∼14% more accurate compared to classification. These
empirical results highlight the importance of feature engineering in
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Table 2: Comparison between Classification and Ranking in
COTA v1.

Contact Type Reply Template Combined
Acc Hits@3 Acc Hits@3 Accuracy

Classification 0.4583 0.6118 0.3669 0.5315 0.3190
Ranking 0.4913 0.6716 0.4753 0.7207 0.4552

Table 3: Categorical decoder (multi-class contact type classi-
fication) vs Sequential decoder (predicts paths in the contact
type tree) on contact type prediction. Accuracy+p indicates
accuracy considering also the parent of the target node as a
correct prediction.

Contact Type Decoder Accuracy Accuracy+p

Categorical 0.6321 0.6743
Sequential 0.6568 0.7342

Table 4: Effect of adding dependency between the reply tem-
plate decoder and the contact type decoder.

Reply Template Combined
Reply Template Decoder Accuracy Hits@3 Accuracy

No dependency 0.5061 0.7042 0.4012
With dependency 0.5471 0.7521 0.5312

cases where a non-deep-learning algorithm is employed to tackle
the task at hand.

5.5 COTA v2: Testing Prior Knowledge
Injection Hypotheses

The three hypotheses regarding the knowledge injection in the
model architecture discussed in Section 4.2 are tested:

(1) The sequential decoder could learn to make more reasonable
mistakes.

(2) Adding a dependency from contact type to reply template
should improve performance in predicting reply templates.

(3) Adding a dependency from contact type to reply template
should improve performance in predicting both contact type
and reply templates at the same time.

Hypothesis 1 is confirmed by the results shown in Table 3. The
sequential decoder is slightlymore accurate than the categorical one.
Furthermore, parents of the correct contact types are included as
correct predictions (Accuracy+p), as those are considered reasonable
mistakes, and the sequential decoder obtains a ∼6% higher score
in this setting, confirming that it makes more reasonable mistakes
than the categorical one.

Hypothesis 2 and 3 are confirmed by the results shown in Ta-
ble 4. Adding the dependency between the reply template decoder
and the contact type one improves the performance on the reply
template prediction by ∼4% accuracy and approximate ∼5% Hits@3.
The biggest improvement is visible on the combined accuracy of
both prediction tasks, where adding the dependency improves the
accuracy by ∼13% and brings the score close to the accuracy on

Table 5: Comparison between COTA v1 and COTA v2.

Contact Type Reply Template Combined
Acc Hits@3 Acc Hits@3 Accuracy

COTA v1 0.4913 0.6716 0.4753 0.7207 0.4552
COTA v2 0.6568 0.7258 0.5471 0.7521 0.5312

the reply template alone, confirming that the dependency helps
coherence between both outputs.

5.6 Comparison between COTA v1 and v2
After obtaining the best models for COTA v1 and COTA v2, both
models are compared directly for all tasks measuring the combined
accuracy. The results in Table 5 show how COTA v2 outperforms
COTA v1 in all tasks with a variable margin, most notably in con-
tact type accuracy by ∼16% and in combined accuracy by ∼8% .
This result is in line with literature on text classification where
deep learning models outperform other ML approaches when big
amounts of training data is available.

5.7 Model Analysis of COTA v2
Here, the deep learning models in COTA v2 are analyzed in order to
understand how it works and its error modes. The representations
learned as a byproduct of training on the impact of class imbalance
on model performance are visualized.

To gain insight into the model inner working, the embeddings
the model learns for the words in the tickets and for the contact
types are visualized. The high-dimensional embeddings space is
projected to 2d using t-SNE [28]. Fig. 8(A) shows the word em-
beddings of a set of keywords often encountered in COTA’s use
case. Meaningful clusters emerge in the the t-SNE plot. Semanti-
cally related words such as “car” and “vehicle”, “phone” and “call”
appear to be close to each other. Fig. 8(B) shows the embeddings
learned for the contact types with each data point corresponding
to one unique contact type. The embeddings are extracted from
the weights of the last fully-connected layer before the softmax
layer in the deep learning model for classifying contact types. Each
column of the weight matrix can be interpreted as the embedding
encoding of a contact type class. The contact types are color coded
into three major groups, namely “rider”, “driver”, and “other” (e.g.,
eater, restaurant, etc.). The t-SNE plot shows clear clustering of rider
and driver related contact types. These visualizations intuitively
confirm that the model is learning reasonable representations and
suggest that the model is capable to capture correlations and se-
mantical connections between words and the relationship between
contact types.

Class imbalance is a systematic property of the dataset: some
classes (both contact types and reply templates) are rarely used by
the CSRs, because those types of issues either rarely occur, or the
distribution of issues the users face change continuously due to
seasonality. As a result, older classes are less relevant and rarely
used. Fig. 9 shows how the F1 score of each class compares against
the class frequency; as expected, the model performs much better
on frequent classes than rare ones because there is more training
data available.
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Figure 8: Embeddings learned by the deep learning models: a) word embeddings, b) entity embeddings of contact types.
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Figure 9: Class frequency compared with F1 score of COTA
v2 predictions on both contact types and reply templates.

The model analysis led to directions for improving the overall
system, including the addition of relevantmetadata as input features
and the consolidation of the number of both contact types and reply
templates to remove unused ones in order to have a more balanced
class distribution and a higher amount of data in each class.

5.8 Evaluation of Business Metrics
To measure COTA’s impact, controlled A/B tests are conducted
online on English language tickets. In those experiments, there
are thousands of agents, randomly assigned into either control
or treatment groups. Agents in the control group ware exposed
to the original workflow without suggestions, while agents in the
treatment group are shown amodified user interface containing sug-
gestions on contact types and reply templates produced by COTA
system. We collect tickets solved solely by either agents in the con-
trol or treatment group, and measure a few key metrics, including
model accuracy, average handle time, and customer satisfaction
score obtained through surveys.

The online model performance is measured and compared to
offline performance. The model performance is consistent in both
the offline and online settings. Then, customer satisfaction scores
are measured and compared across control and treatment groups.
In general, customer satisfaction often increases by a few percent-
age points. This finding indicates that COTA delivers the same or
slightly higher quality of customer service. Finally, to determine
howmuch COTA affected ticket resolution speed, the average ticket
handling time between the control and treatment groups is mea-
sured as well. On average, this new feature reduced ticket handling
time by ∼10% (p-value ∼10−8).

Therefore, by injecting ML intelligence into the ticket solving
process, COTA system can significantly improve agent performance
and speed up ticket resolution with an improved customer satisfac-
tion.

6 CONCLUSIONS
This paper describes two different model implementations of an
intelligent system for improving customer support: COTA v1, a
model based on feature engineering, and COTA v2, a model that
exploits raw signals through deep learning architectures. In COTA
v1, a feature engineering method is employed to transform a clas-
sification task with thousands of classes to a pair-wise ranking
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one. COTA v2 is based on Encoder-Combiner-Decoder, a newly
proposed novel deep learning architecture that enables dealing
with different inputs in a flexible way, and allows for multi-task
learning. Our experiments validate the hypotheses that 1) a ranking
objective would perform better than a multi-class classification one
in COTA v1, and 2) injection of prior knowledge in the form of
architecture choices would improve performance making model’s
errors more reasonable. COTA v1 and COTA v2 are compared,
showing how deep learning architectures perform better than a
feature engineering-based architecture when learning from big
datasets like the one we used. Insights on the inner working of
the model are obtained by visualizing the embeddings it learns,
and its shortcomings in dealing with rare classes and imbalance
in the class distribution are analyzed. This analysis results in a set
of improvements to be implemented in the future version of the
system. At the end, COTA is deployed and tested in production and
the results show that it can significantly reduce ticket resolution
time while improving customer satisfaction.
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